

Caged Ball Spline SLS/SLF

Equipped with Caged-Ball Technology. Achieves high speed, low noise and long service life.

Model SLF

Model SLS

Model SLS-L

For details, visit THK at **www.thk.com**

*Product information is updated regularly on the THK website.

Caged Ball Spline

Equipped with Caged-Ball Technology.

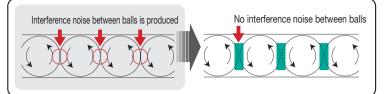
Achieves high speed, low noise and long service life.

The caged-ball technology, developed by bringing together THK's technologies and know-how, is now integrated in the new Ball Spline.

The integration of the ball cage enables the circulating motion of evenly spaced balls and high-speed response to be achieved. In addition, it eliminates collision and mutual friction between balls, and realizes low noise, pleasant running sound and low particle generation. As the grease retention is increased, long-term maintenance-free operation is also achieved.

Model SLS (medium-load type)

The circumference of the spline nut is shaped in a straight cylinder. Using a key, this model can be secured to the housing, or transmit a torque.


Model SLS-L (heavy-load type)

A heavy-load type with the same outer diameter as model SLS and a longer spline nut. It is optimal in cases where a large torque is applied in a small space, and in cases where an overhang load or moment is applied.

Model SLF It can easily be assembled, and allows a shorter housing than securing it using a key.

Four Advantages Achieved with the Integration of the Caged-Ball Technology

High-speed Response

Models SLS/SLF adopt the caged-ball technology to enable the circulating motion of evenly spaced balls to be maintained and high-speed response to be achieved, the cycle time of the machine can be improved.

Low Noise, Pleasant Running Sound and Low Particle Generation

Models SLS/SLF adopt the caged-ball technology, they eliminate collision and mutual friction between balls, and realize low noise, pleasant running sound and low particle generation.

Long-term Maintenance-free Operation

Models SLS/SLF adopt the caged-ball technology to substantially increase the grease retention, thus achieving long-term maintenance-free operation.

Smooth Motion (Small Rolling Fluctuation)

Models SLS/SLF adopt the caged-ball technology and a new circulation method, thus achieving stable and smooth motion with small rolling fluctuation.

Model SLS (SLS25 SLS30 SLS40 SLS50 SLS60 SLS70 SLS80 SLS100)
 Model SLS-L (SLS25L SLS30L SLS40L SLS50L SLS60L SLS70L SLS80L SLS100L)
 Model SLF (SLF25 SLF30 SLF40 SLF50 SLF60 SLF70 SLF80 SLF100)

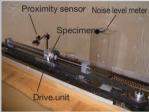
Caged Ball Spline

[High Speed]

Conditions

Model tested	SLS50			
Testing environment	22 to 27.5°C			
Stroke	1000mm			
Maximum speed	200m/min			
Acceleration/deceleration	5G (49m/s²)			
Applied load	Light preload (CL)			
Lubricant	THK AFB-LF Grease			

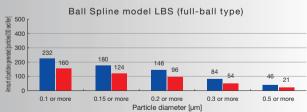
Test results


No anomaly after travelling 10,000 km

[Low Noise, Pleasant Running Sound]

Conditions

Shaft diameters	SLF50/LBF50
Stroke	600mm
Speeds	30,50,100,150m/min
Measuring instrument	Noise level meter


Overview of the test machine

[Low Particle Generation]

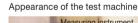
Conditions

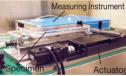
Model No.	SLF50CL+350LP/LBS50CL+350LP
Maximum speed	30m/min
Acceleration	2.84m/s ²
Stroke	200mm
Amount of air supplied	1ℓ/200sec
Lubricant	THK AFE-CA Grease
Equipment using the product	Particle counter

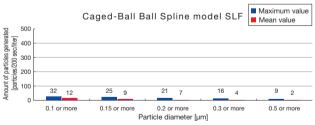
[Smooth Motion (Small Rolling Fluctuation)]

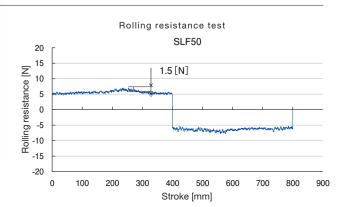
Conditions

d (CM)
rease


Appearance of the test machine (high-speed durability test)




Appearance of the specimen



Accuracy Standards

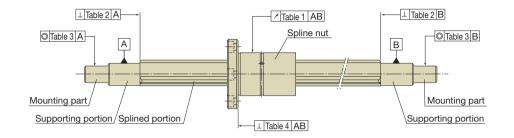


Table1) Runout of the Spline Nut Circumference in Relation to the Support of the Spline Shaft

Асси	Jracy		Runout(max)										
Nominal shaft diameter		25,30			40,50		60,70,80			100			
Overall spline s	haft length (mm)		23,50			40,00		00,70,00			100		
Above	Or less	Normal	Upper	Precision	Normal	Upper	Precision	Normal	Upper	Precision	Normal	Upper	Precision
_	200	53	32	18	53	32	16	51	30	16	51	30	16
200	315	58	39	21	58	36	19	55	34	17	53	32	17
315	400	70	44	25	63	39	21	58	36	19	55	34	17
400	500	78	50	29	68	43	24	61	38	21	57	35	19
500	630	88	57	34	74	47	27	65	41	23	60	37	20
630	800	103	68	42	84	54	32	71	45	26	64	40	22
800	1000	124	83	-	97	63	38	79	51	30	69	43	24
1000	1250	-	_	-	114	76	47	90	59	35	76	48	28
1250	1600	-	-	-	139	93	-	106	70	43	86	55	33
1600	2000	-	_	-	-	_	-	128	86	54	99	65	40
2000	2500	-	_	-	-	_	-	156	_	-	117	78	49
2500	3000	-	_	-	-	-	-	_	-	-	143	96	61

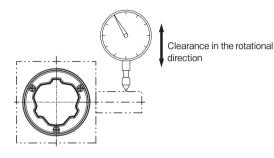
(Table 2) Perpendicularity of the Spline Shaft End Face in Relation to the Support of the Spline Shaft

_						
Accuracy	Perpendicularity (max)					
Nominal shaft diameter	Normal grade (No symbol)	High accuracy grade (H)	Precision Grade (P)			
25,30	33	13	9			
40,50	39	16	11			
60,70,80	46	19	13			
100	54	22	15			

(Table 4) Straightness of the Flange-mounting Surface of the Spline Nut in Relation to the Support of the Spline Shaft

Accuracy	Perpendicularity (max)				
Nominal shaft diameter	Normal grade (No symbol)	High accuracy grade (H)	Precision Grade (P)		
25,30	39	16	11		
40,50	46	19	13		
60,70,80	54	22	15		
100	63	25	18		

(Table 3) Concentricity of the Part-mounting in Relation to the Support of the Spline Shaft


Accuracy	P	Perpendicularity (max)					
Nominal shaft diameter	Normal grade (No symbol)	High accuracy grade (H)	Precision Grade (P)				
25,30	53	22	13				
40,50	62	25	15				
60,70,80	73	29	17				
100	86	34	20				

Clearance in the Rotation Direction

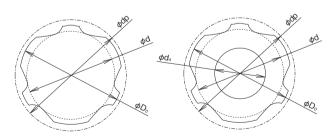
With the Ball Spline, the sum of clearances in the circumferential direction is standardized as the clearance in the rotational direction. Specific clearance values are standardized for each model, allowing you to select a clearance that meets the conditions. See the General Catalog for details.

Table 5 Measurement of Clearance in the Rotational Direction Unit: µm							
Nominal shaft	Clearance in the rotational direction						
diameter	Normal	CL	CM				
25,30,40	+1 to -2	-2 to -6	-6 to -10				
50,60	+2 to -4	-4 to -8	-8 to -12				
70,80,100	+4 to -8	-8 to -12	-12 to -20				

Maximum Manufacturing Length of the Spline Shaft

Table 6 Maximum Manufacturing Length of the Spline Shaft of Models SLS/SLF Unit: mm

Nominal shaft	Maximum Manufacturing Length : L					
diameter	Normal grade(No symbol)	High accuracy grade(H)	Precision grade(P)			
25	2000	1500	1000			
30	2000	1600	1250			
40	2000	2000	1500			
50	3000	2000	1500			
60	4000	2000	2000			
70	4000	2000	2000			
80	4000	2000	2000			
100	4000	3000	3000			


		1	
<	 	L	 ~ >

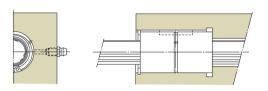
Material: S55C equivalent Hardness: 58 to 64 H_BC

Sectional Shape of the Spline Shaft

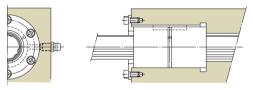
	\frown									
(Table 7	Sectional	Shape	of the	Spline	Shaft	of	Models	SLS/SLF	
									I Insit ' ma	

\sim						Unit:mm	
Nominal	Major diameter	Ball center-to-center	Minor	Hole	Mass	Mass of the	
shaft	φD₀	diameter	diameter	diameter	[kg/m]	hollow shaft	
diameter	h7	φdp	φd	φd4	[Kg/III]	[kg/m]	
25	25	25.2	21.6	12	3.51	2.62	
30	30	30.2	25.8	16	5.05	3.47	
40	40	40.6	35.2	22	9.18	6.19	
50	50	50.6	44.4	25	14.45	10.59	
60	60	61.0	54.0	32	21.23	14.90	
70	70	71.0	62.8	-	28.57	-	
80	80	80.8	71.3	52.5	37.49	20.48	
100	100	101.2	90.0	67.5	58.97	30.85	

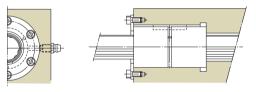
Cross-Sectional Profile of the Spline Shaft Sectional Shape of the Standard Hollow Type Spline Shaft


Mounting method

For the fit between the spline nut and the housing, transition fit is commonly used. If the accuracy of the Ball Spline does not need to be very high, clearance fit is recommended.

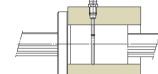

	General conditions	H7
Housing Inner-diameter Tolerance	When clearance needs to be small	J6

Mounting Model SLS


• Examples of mounting the spline nut

Mounting using a snap ring

Mounting using a presser flange


Mounting using a stop plate

(Table 8) Cross-sectional Characteristics of the Spline Shaft

Mounting Model SLF

• Example of mounting the spline nut

Mounting using a flange

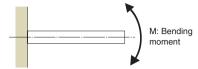
Precautions on mounting the product

- On both ends of the spline nut of Caged Ball Ball Spline model SLS, resin end caps are installed.
 - Hitting them or pressing hard may cause damage. You must take care not to apply an excessive load.
- The fastening strength of the spline nut in the axial direction does not need to be very high. However, you must avoid retaining the spline only with a driving fit.

Designing the Strength of the Spline Shaft

The spline shaft of the Ball Spline is a compound shaft capable of receiving a radial load and torque. When the load and torque are large, the spline shaft strength must be taken into account.

Nominal s	haft diameter	Geometrical moment of inertia	Modulus section Z mm ³	Polar moment of inertia I _P mm ⁴	Section modulus Z _P mm ³	
25	Solid shaft	1.61×104	1.29×103	3.22×104	2.57×103	
25	Hollow shaft	1.51×104	1.20×103	3.01×104	2.41×103	
	Solid shaft	3.33×104	2.22×103	6.65×104	4.43×103	
30	Hollow shaft	3.00×104	2.00×103	6.01×104	4.00×103	
40	Solid shaft	1.09×10 ⁵	5.47×10 ³	2.19×10 ⁵	1.09×104	
	Hollow shaft	9.79×104	4.90×103	1.96×10⁵	9.79×103	
	Solid shaft	2.71×10 ⁵	1.08×104	5.41×10 ⁵	2.17×104	
50	Hollow shaft	2.51×10 ⁵	1.01×104	5.03×10⁵	2.01×104	
60	Solid shaft	5.83×10 ⁵	1.94×104	1.17×10 ⁶	3.89×104	
60	Hollow shaft	5.32×10⁵	1.77×104	1.06×10 ⁶	3.54×104	
70	Solid shaft	1.06×10 ⁶	3.02×104	2.11×10 ⁶	6.04×104	
80	Solid shaft	1.82×10 ⁶	4.55×104	3.64×10 ⁶	9.10×104	
80	Hollow shaft	1.45×10 ⁶	3.62×104	2.90×10 ⁶	7.24×104	
100	Solid shaft	4.50×10 ⁶	9.00×10 ⁴	9.00×10 ⁶	1.80×10⁵	
100	Hollow shaft	3.48×10 ⁶	6.96×104	6.96×10 ⁶	1.36×10⁵	

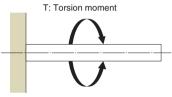


[Spline Shaft Receiving a Bending Load]

Product Overview

ed Ball Spline (SLS/SLF

When a bending load is applied to the spline shaft of a Ball Spline, obtain the spline shaft diameter using the equation (1) below.


- M : Maximum bending moment acting on the spline shaft [N-mm]
- σ : Permissible bending stress of the spline shaft [98N/mm²]
- Z : Modulus section factor of the spline shaft [mm³]

[Spline Shaft Receiving a Torsion Load]

When a torsion load is applied on the spline shaft of a Ball Spline, obtain the spline shaft diameter using the equation (2) below.

- T : Maximum torsion moment [N-mm]
- τ_a : Permissible torsion stress of the spline shaft [49N/mm²]
- Z_p: Polar modulus of section of the spline nut [mm³]

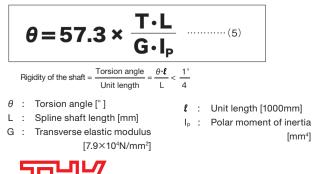
[When the Spline Shaft Simultaneously Receives a Bending Load and a Torsion Load]

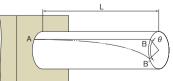
When the spline shaft of a Ball Spline receives a bending load and a torsion load simultaneously, calculate two separate spline shaft diameters: one for the equivalent bending moment (M_e) and the other for the equivalent torsion moment (T_e). Then, use the greater value as the spline shaft diameter.

Equivalent bending moment

 $M_e = \sigma \cdot Z$

Equivalent torsion moment


$$\mathbf{T}_{e} = \sqrt{\mathbf{M}^{2} + \mathbf{T}^{2}} = \mathbf{M} \cdot \sqrt{\mathbf{1} + \left(\frac{\mathbf{T}}{\mathbf{M}}\right)^{2}} \qquad (4)$$


$T_e = \tau_a \cdot Z_p$

7

[Rigidity of the Spline Shaft]

The rigidity of the spline shaft is expressed as a torsion angle per meter of shaft length. Its value should be limited within $1^{\circ}/4$.

[Deflection and Deflection Angle of the Spline Shaft]

The deflection and deflection angle of the Ball Spline shaft need to be calculated using equations that meet the relevant conditions. Table9 and Table10 represent these conditions and the corresponding equations.

Table 9 Deflect	ion and Deflection Angle Equations		
Support method	Condition	Deflection equation	Deflection angle equation
Both ends free		$\delta_{\max} = \frac{P\boldsymbol{\ell}^3}{48EI}$	$\boldsymbol{\iota}_1 = \boldsymbol{0}$ $\boldsymbol{\iota}_2 = \frac{\mathbf{P}\boldsymbol{\ell}^2}{16EI}$
Both ends fastened		$\delta_{\max} = \frac{P\boldsymbol{\ell}^3}{192EI}$	i = 0 i = 0
Both ends free	Uniform load p	$\delta_{\max} = \frac{5p\boldsymbol{\ell}^4}{384\text{EI}}$	$\boldsymbol{\iota}_2 = \frac{p\boldsymbol{\ell}^3}{24EI}$
Both ends fastened	Uniform load p	$\delta_{\max} = \frac{p \boldsymbol{\ell}^4}{384 \text{EI}}$	i ₂ = 0
Table 10 Deflect	ion and Deflection Angle Equations		
\bigcirc			
Support method	Condition	Deflection equation	Deflection angle equation
Support	Condition	Deflection equation $\delta_{max} = \frac{Pl^3}{3EI}$	Deflection angle equation $\mathbf{i}_1 = \frac{\mathbf{P} \mathbf{\ell}^2}{2\mathbf{E}\mathbf{I}}$ $\mathbf{i}_2 = 0$
Support method One end	P W		$\mathbf{i}_{1} = \frac{\mathbf{P}\boldsymbol{\ell}^{2}}{2\mathbf{E}\mathbf{I}}$
Support method One end fastened	Luniform load p	$\delta_{\max} = \frac{P\boldsymbol{\ell}^3}{3EI}$	$\iota_1 = \frac{P \ell^2}{2EI}$ $\iota_2 = O$ $\iota_1 = \frac{P \ell^3}{6EI}$
Support method One end fastened One end fastened Both ends	l l l l l l l l l l l l l l l l l l l	$\delta_{max} = \frac{P \ell^3}{3El}$ $\delta_{max} = \frac{p \ell^4}{8El}$ $\delta_{max} = \frac{\sqrt{3}M_0 \ell^2}{8El}$	$i_{1} = \frac{P \ell^{2}}{2EI}$ $i_{2} = 0$ $i_{1} = \frac{P \ell^{3}}{6EI}$ $i_{2} = 0$ $i_{1} = \frac{M_{0} \ell}{12EI}$

- l : Span [mm]
- p : Uniform load [N/mm]
- I : Geometrical moment of inertia [mm⁴] E : Modulus of longitudinal elasticity 2.06×10⁵ [N/mm²]
- L1 : Deflection angle at loading point

[Dangerous Speed of the Spline Shaft]

Product Overview

Caged Ball Spline (SLS/SLF)

When a Ball Spline shaft is used to transmit power while rotating, as the rotational speed of the shaft increases, the rotation cycle nears the natural frequency of the spline shaft. It may cause resonance and eventually result in inability to move. Therefore, the maximum rotational speed of the shaft must be limited to below the dangerous speed that does not cause resonance. The dangerous speed of the spline shaft is obtained using the equation (6). (0.8 is multiplied as a safety factor) If the shaft's rotation cycle exceeds or nears the resonance point during operation, it is necessary to reconsider the spline shaft diameter.

Dangerous Speed

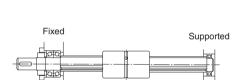
$$\mathbf{N}_{c} = \frac{60\lambda^{2}}{2\pi \cdot \ell_{b}^{2}} \cdot \sqrt{\frac{\mathbf{E} \times 10^{3} \cdot \mathbf{I}}{\gamma \cdot \mathbf{A}}} \times \mathbf{0.8} \quad \dots \quad (6)$$

Supported

hat

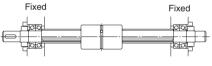
Supported

- N_c: Dangerous speed [min⁻¹]
- $\pmb{\ell}_{\scriptscriptstyle \mathsf{b}}~:~$ Distance between two mounting surfaces [mm]
- E : Young's modulus [2.06×10⁵N/mm²]
- I : Minimum geometrical moment of inertia of the shaft [mm⁴]


$$I = \frac{\pi}{64} d^4$$
 d:Minor diameter [mm]

Y : Density (specific gravity) [7.85×10⁻⁶kg/mm³]

$$A = \frac{\pi}{4} d^2 \qquad \qquad d: Minor diameter [mm]$$


A : Spline shaft cross-sectional area [mm²]

λ	:	Factor according to the mo	ounting method
		(1)Fixed - free	λ=1.875
		(2)Supported - supported	$\lambda = 3.142$
		(3)Fixed - supported	$\lambda = 3.927$
		(4)Fixed - fixed	$\lambda = 4.73$

Supported - supported

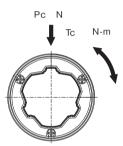
Fixed - supported

Fixed - fixed

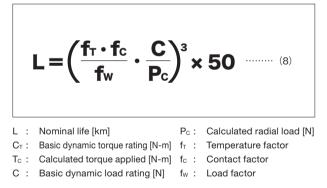
Predicting the Service Life

[Nominal Life]

The service life of a Ball Spline varies from unit to unit even if they are manufactured through the same process and used in the same operating conditions. Therefore, the nominal life defined below is normally used as a guidepost for obtaining the service life of a Ball Spline.


Nominal life is the total travel distance that 90% of a group of identical ball splines independently operating under the same conditions can achieve without showing flaking (scale-like pieces on a metal surface).

[Calculating the Nominal Life]


The nominal life of a Ball Spline varies with types of loads applied during operation: torque load, radial load and moment load. The corresponding nominal life values are obtained using the equations (7) to (10) below. (The basic load ratings in these loading directions are indicated in the specification table for the corresponding model number.)

•When a Torque Load is Applied

$$L = \left(\frac{f_{\tau} \cdot f_c}{f_w} \cdot \frac{C_{\tau}}{T_c}\right)^3 \times 50 \quad \dots \quad (7)$$

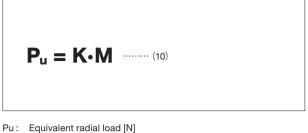
When a Radial Load is Applied

When a Torque Load and a Radial Load are Simultaneously Applied

When a torque load and a radial load are simultaneously applied, calculate the nominal life by obtaining the equivalent radial load using the equation (9) below.

P_E : Equivalent radial load [N]

cos a : Contact angle i=Number of rows of balls under a load 40° 3


dp : Ball center-to-center diameter [mm]

When a Moment Load is Applied to a Single Nut or Two Nuts in Close Contact with Each Other

Obtain the equivalent radial load using the equation (10) below.

- Pu: Equivalent radial load [N] (with a moment applied)
- K : Equivalent Factors (see Table11)
- M: Applied moment [N-mm]

However, M should be within the range of the static permissible moment.

•When a Moment Load and a Radial Load are Simultaneously Applied

Calculated the nominal life from the sum of the radial load and the equivalent radial load.

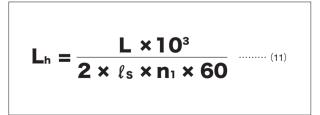

Moment Equivalent Factor

Table 11) Moment Equivalent Factor of Models SLS/SLF

Model No.	One spline nut	Two spline nuts in tight contact with each other
SLS/SLF25	0.187	0.030
SLS25L	0.148	0.027
SLS/SLF30	0.153	0.027
SLS30L	0.129	0.024
SLS/SLF40	0.114	0.021
SLS40L	0.102	0.019
SLS/SLF50	0.109	0.018
SLS50L	0.091	0.017
SLS/SLF60	0.080	0.015
SLS60L	0.072	0.014
SLS/SLF70	0.101	0.016
SLS70L	0.076	0.014
SLS/SLF80	0.083	0.013
SLS80L	0.072	0.012
SLS/SLF100	0.068	0.011
SLS100L	0.056	0.010

Calculating the Service Life Time

When the nominal life (L) has been obtained in the equation above, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the equation (11) below.

L_h: Service life time [h]

 n_1 : Number of reciprocations per minute [min⁻¹]

 $[\]boldsymbol{\ell}_{S}$: Stroke length [m]

■f⊤:Temperature Factor

Since the service temperature of the Caged Ball Ball Spline is normally 80° C or below, fr = 1.0.

fc:Contact Factor

When multiple spline nuts are used in close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and (C₀) by the corresponding contact factor in Table12.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table12.

fw:Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. When loads applied on a Ball Spline cannot be measured, or when speed and impact have a significant influence, divide the basic load rating (C or C₀), by the corresponding load factor in the table of empirically obtained data on Table13.

Table 12) Contact Factor (f

Number of spline nuts in close contact with each other	Contact factor f.
2	0.81
3	0.72
4	0.66
5	0.61
Normal use	1

Vibrations/impact	Speed(V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	High V>2m/s	2 to 3.5

Calculating the Static Safety Factor

When calculating the load applied to the Ball Spline, it is necessary to calculate the mean load used for service life calculation and the maximum load used for static safety factor calculation. In particular, if the start and stop are intensely repeated, a cutting load is applied, or a large moment resulting from an overhang load is applied, then an unexpectedly large load may be applied. When selecting a model, check whether the use is suitable for its maximum load (regardless of whether the product is stationary or operating) by calculating the static safety factor using the equation (12). Table 14 shows reference values for the static safety factor.

fs : Static safety factor

Co : Basic static load rating [N]

Pmax : Maximum applied load [N]

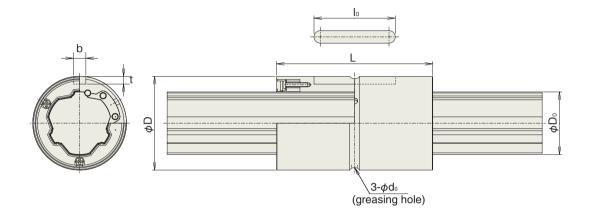
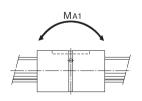
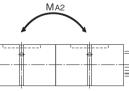
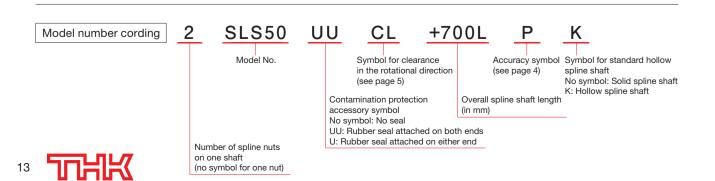
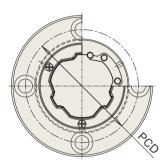

* The basic static load rating refers to the static load with constant direction and magnitude at which the sum of the permanent deformation of the rolling element and the permanent deformation of the raceway is 0.0001 time the diameter of the rolling element at the contact point under the maximum stress.

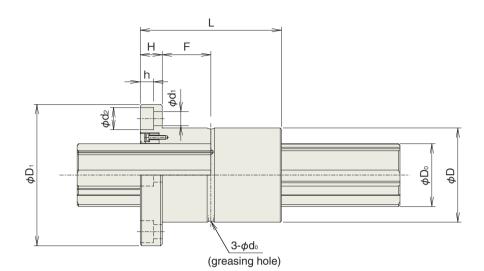
Table 14 Reference Value of Static Safety Factor (fs)

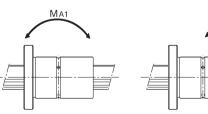

Machine using the product	Load conditions	Lower limit of fs
	Without vibration/impact	1.0 to 3.5
General industrial machinery	With vibration/impact	2.0 to 5.0
Maakina taal	Without vibration/impact	1.0 to 4.0
Machine tool	With vibration/impact	2.5 to 7.0

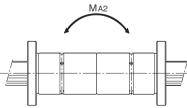

* The reference value of static safety factor may vary depending on the service conditions such as service environment, lubrication state and accuracy, rigidity, etc. of the mounting section.

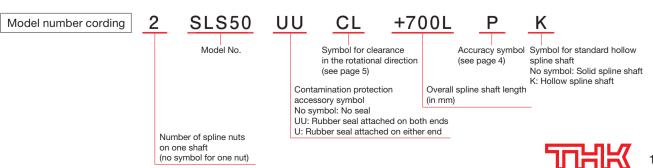





) UU	maight	type)														Unit: mm
Model No.	Outer diamete		Spline nut di r diameter Length			mensions Keyway dimensions hole				Basic tore	que rating	Basic load rating		Static permissible moment		Mass	
Wodel No.	D	Tolerance	L	Tolerance	b н8	t +0.1 0	L o	d₀	diameter D₀ h7	C⊤ [N-m]	С₀т [N-m]	C [kN]	C₀ [kN]	M _{A1} [N-m]	M _{A2} [N-m]	Spline Nut [kg]	Spline shaft [kg/m]
SLS25 SLS25L	37	0	60 70		5	3	33	2	25	219.9 261.9	306.8 394.5	18.2 21.7	22.5 29.0	136 220	851 1203	0.15 0.18	3.51
SLS30 SLS30L	45	-0.016	70 80		7	4	41	3	30	366.5 416.4	513.3 616.0	25.4 28.9	31.5 37.8	233 330	1341 1803	0.30 0.34	5.05
SLS40 SLS40L	60	0	90 100	0	10	4.5	55	3	40	818.9 890.0	1135.4 1277.3	42.8 46.5	52.5 59.1	520 652	2801 3529	0.69 0.79	9.18
SLS50 SLS50L	75	-0.019	100 112	-0.3	15	5	60	4	50	1373.4 1571.2	1783.1 2165.2	57.6 65.9	66.2 80.4	687 996	4156 5349	1.30 1.47	14.45
SLS60 SLS60L	90		127 140		18	6	68	4	60	2506.7 2723.2	3321.0 3736.2	87.8 95.3	103.0 115.8	1452 1820	7733 9570	2.25 2.50	21.23
SLS70 SLS70L	100	0 -0.022	110 135		18	6	68	4	70	2986.3 3708.4	3474.7 4738.2	89.7 111.4	92.5 126.1	1038 1867	6392 10135	2.13 2.71	28.57
SLS80 SLS80L	120		140 155	0	20	7	80	5	80	4664.6 5195.3	5477.4 6390.4	122.8 136.8	127.7 148.9	1739 2327	11482 14491	4.22 4.77	37.49
SLS100 SLS100L	140	0 -0.025	160 185	-0.4	28	9	93	5	100	8922.3 10424.4	10211.6 12764.6	188.2 219.8	190.7 238.4	3155 4816	19118 26463	5.20 6.22	58.97







Model SLF (Flange type)

		(i iaiig	Je ty	pe)															ι	Jnit: mm
Model No.	Outer diameter		Length		Spline nut di Flange diameter		mensi Greas- ing hole	;-				Spline shaft outer	Basic torque rating		Basic load rating		Static permissible moment		Mass	
	D	Tolerance	L	Tolerance	D1	Tolerance	d₀	d₀ H	F	PCD	Mounting hole d₁×d₂×h	diameter D₀ h7	C⊤ [N-m]	С₀т [N-m]	C [kN]	C₀ [kN]	M _{A1} [N-m]	M _{A2} [N-m]	Spline Nut [kg]	Spline shaft [kg/m]
SLF25	37	0 -0.016	60		60	0 -0.2	2	9	21	47	5.5×9.5×5.4	25	219.9	306.8	18.2	22.5	136	851	0.26	3.51
SLF30	45		70		70		3	10	25	54	6.6×11×6.5	30	366.5	513.3	25.4	31.5	233	1341	0.45	5.05
SLF40	60	0 -0.019	90	0	90		3	14	31	72	9×14×8.6	40	818.9	1135.4	42.8	52.5	520	2801	1.06	9.18
SLF50	75		100	-0.3	113		4	16	34	91	11×17.5×11	50	1373.4	1783.1	57.6	66.2	687	4156	1.90	14.45
SLF60	90		127		129 0 -0.3	0	4	18	45.5	107	11×17.5×11	60	2506.7	3321.0	87.8	103.0	1452	7733	3.08	21.23
SLF70	100	0 -0.022 0 -0.025	110			4	20	47.5	117	14×20×13	70	2986.3	3474.7	89.7	92.5	1038	6392	3.25	28.57	
SLF80	120		140	0	168		5	22	48	138	16×23×15.2	80	4664.6	5477.4	122.8	127.7	1739	11482	5.82	37.49
SLF100	140		160	-0.4	195	0 -0.4	5	25	55	162	18×26×17.5	100	8922.3	10211.6	188.2	190.7	3155	19118	7.66	58.97

计K Caged Ball Spline SLS/SLF

Precautions on use

The Spline Nut and the Spline Shaft

- Do not remove the spline nut from the spline shaft unless it is necessary. If reinstalling the spline nut onto the spline shaft after inevitably removing the nut, align the ball position in the spline nut with the groove position of the spline shaft, and gradually insert the spline shaft straight into the spline nut. If the spline shaft is tilted when it is inserted, balls may fall out or the circulation part may be damaged.
- If the spline shaft gets stuck halfway while being inserted into the nut, do not force the shaft into the nut, but pull it out once, recheck the ball position and the groove position of the spline shaft, then gradually insert the shaft straight into the nut.
- After inserting the spline shaft into the spline nut, check whether the spline nut or the spline shaft smoothly moves. If the spline shaft was forcibly inserted, functional loss may have occurred even if the product looks intact.

Handling

- Do not disassemble the parts. Doing so may cause dust to enter the product or degrade the assembly accuracy.
- Tilting the spline nut or the spline shaft when they are assembled may cause it to fall by its own weight.
- Do not drop or hit the Ball Spline. Doing so may damage it. Applying impact to the product may cause functional loss even if the product looks intact.

- Thoroughly remove anti-rust oil and feed a lubricant before using the product.
- · Do not mix lubricants of different physical properties.
- In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- · When planning to use a special lubricant, contact THK before using it.
- When adopting oil lubrication, the lubricant may not be distributed throughout the product depending on the mounting orientation of nut. Contact THK for details.
- · Lubrication interval varies according to the conditions. Contact THK for details.

Precautions on Use

- Entrance of foreign material may damage the ball circulation part or cause functional loss. Prevent foreign material, such as dust and cutting chips, from entering the product.
- When planning to use the product in an environment where the coolant penetrates into the spline nut, it may disrupt the function of the product depending on the type of the coolant. Contact THK for details.
- · Do not use the product at a temperature above 80°C. Contact THK if you desire to use the product at a temperature above 80°C. · If foreign material, such as dust or cutting chips, adheres to the product, replenish the lubricant after cleaning the product. For
- the type of the cleaning fluid to be used, contact THK.
- When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.
- · Removing the nut from the shaft then reinstalling it onto the shaft may cause balls to fall. Take much care in handling the product.
- · If desiring for additional machining, such as dowel hole, to the flange of Ball Spline Nut, please contact THK prior to ordering. Storage
- When storing the Ball Spline, enclose it in a package designated by THK and store it in a horizontal orientation while avoiding high temperature, low temperature and high humidity.

• "LM GUIDE," and " () are registered trademarks of THK CO., LTD.

- The photo may differ slightly in appearance from the actual product.
- The appearance and specifications of the product are subject to change without notice. Contact THK before placing an order.

OITALY OFFICE

- Although great care has been taken in the production of this catalog, THK will not take any responsibility for damage resulting from typographical errors or omissions.
- For the export of our products or technologies and for the sale for exports, THK in principle complies with the foreign exchange law and the Foreign Exchange and Foreign Trade Control Law as well as other relevant laws.
- For export of THK products as single items, contact THK in advance.

'HK CO., LTD.

HEAD OFFICE 3-11-6, NISHI-GOTANDA, SHINAGAWA-KU, TOKYO 141-8503 JAPAN

INTERNATIONAL SALES DEPARTMENT PHONE:+81-3-5434-0351 FAX:+81-3-5434-0353

Global site : http://www.thk.com/

NORTH AMERICA

THK America.Inc.

- HEADQUARTERS Phone:+1-847-310-1111 Fax:+1-847-310-1271 **CHICAGO OFFICE**
- Phone:+1-847-310-1111 Fax:+1-847-310-1182
- **NORTH EAST OFFICE** Phone:+1-631-244-1565 Fax:+1-631-244-1565
- **OATLANTA OFFICE**
- Phone:+1-770-840-7990 Fax:+1-770-840-7897 **DLOS ANGELES OFFICE**
- Phone:+1-949-955-3145
- Fax:+1-949-955-3149 SAN FRANCISCO OFFICE
- Phone:+1-925-455-8948 Fax:+1-925-455-8965
- DETROIT OFFICE Phone:+1-248-858-9330 Fax:+1-248-858-9455
- **TORONTO OFFICE**
- Phone:+1-905-820-7800 Fax:+1-905-820-7811
- SOUTH AMERICA THK BRAZIL INDUSTRIA E COMERCIO LTDA
- Phone:+55-11-3767-0100 Fax:+55-11-3767-0101 EUROPE

THK GmbH

- EUROPEAN HEADQUARTERS
- Phone:+49-2102-7425-555 Fax:+49-2102-7425-556 DÜSSELDOBE OFFICE.
- Phone:+49-2102-7425-0 Fax:+49-2102-7425-299 STUTTGART OFFICE
- Phone:+49-7141-4988-500 Fax:+49-7141-4988-888 U.K. OFFICE
- Phone:+44-1384-47-1550 Fax:+44-1384-47-1551

- Phone:+46-8-445-7630 Fax:+46-8-445-7639 **AUSTRIA OFFICE** Phone:+43-7229-51400 Fax:+43-7229-51400-7 SPAIN OFFICE
- Phone:+34-93-652-5740 Fax:+34-93-652-5746
- **TURKEY OFFICE** Phone:+90-216-362-4050 Fax:+90-216-569-7150
- **●**PRAGUE OFFICE Phone:+420-2-41025-100 Fax:+420-2-41025-199
- MOSCOW OFFICE Phone:+7-495-649-80-47 Fax:+7-495-649-80-44
- THK Europe B.V.
- **EINDHOVEN OFFICE** Phone:+31-040-290-9500 Fax:+31-040-290-9599
- THK France S.A.S. Phone:+33-4-3749-1400 Fax:+33-4-3749-1401
- CHINA
- THK (CHINA) CO., LTD.
- **HEADQUARTERS**
- Phone:+86-411-8733-7111 Fax:+86-411-8733-700 **SHANGHAI OFFICE**
- Phone:+86-21-6219-3000 Fax:+86-21-6219-9890 BEIJING OFFICE
- Phone:+86-10-8441-7277 Fax:+86-10-6590-3557 **CHENGDU OFFICE**
- Phone:+86-28-8526-8025 Fax:+86-28-8525-6357

Global site : http://	//www.thk.com/		
ITALY OFFICE		GUANGZHOU OFFICE	
Phone:+39-02-9901-1801 SWEDEN OFFICE	Fax:+39-02-9901-1881	Phone:+86-20-8523-8418 SHENZHEN OFFICE	Fax:+86-20-3801-0456
Phone:+46-8-445-7630 AUSTRIA OFFICE	Fax:+46-8-445-7639	Phone:+86-755-2642-9587 • XIAN OFFICE	Fax:+86-755-2642-9604
Phone:+43-7229-51400 SPAIN OFFICE	Fax:+43-7229-51400-79	Phone:+86-29-8834-1712 THK (SHANGHAI) CO.,LTD.	Fax:+86-29-8834-1710
Phone:+34-93-652-5740 TURKEY OFFICE	Fax:+34-93-652-5746	Phone:+86-21-6275-5280	Fax:+86-21-6219-9890
Phone:+90-216-362-4050 PRAGUE OFFICE	Fax:+90-216-569-7150	THK TAIWAN CO.,LTD. TAIPEI HEAD OFFICE	
Phone:+420-2-41025-100 MOSCOW OFFICE	Fax:+420-2-41025-199	Phone:+886-2-2888-3818 TAICHUNG OFFICE	Fax:+886-2-2888-3819
Phone:+7-495-649-80-47 HK Europe B.V.	Fax:+7-495-649-80-44	Phone:+886-4-2359-1505 TAINAN OFFICE	Fax:+886-4-2359-1506
EINDHOVEN OFFICE	E. 01 010 000 0500	Phone:+886-6-289-7668	Fax:+886-6-289-7669
Phone:+31-040-290-9500 HK France S.A.S.	Fax:+31-040-290-9599	KOREA SEOUL REPRESENTATIVE (DEFICE
Phone:+33-4-3749-1400	Fax:+33-4-3749-1401	Phone:+82-2-3468-4351 SINGAPORE	Fax:+82-2-3468-4353
THK (CHINA) CO.,LTD. HEADQUARTERS		THK LM SYSTEM Pte. Ltd. Phone:+65-6884-5500	Fax:+65-6884-5550
Phone:+86-411-8733-7111 SHANGHAI OFFICE	Fax:+86-411-8733-7000	THAILAND	
Phone:+86-21-6219-3000 BEIJING OFFICE	Fax:+86-21-6219-9890	THK LM System Pte.Ltd.Repr Phone:+660-2751-3001	Fax:+660-2751-3003
Phone:+86-10-8441-7277 CHENGDU OFFICE	Fax:+86-10-6590-3557	INDIA THK India Pvt. Ltd.	
Phone:+86-28-8526-8025	Fax:+86-28-8525-6357	Phone:+91-80-2340-9934	Fax:+91-80-2340-9937

- All rights reserved