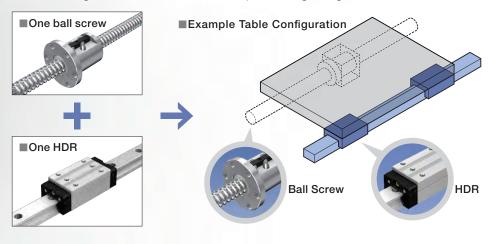


Suited for Single Rail Applications

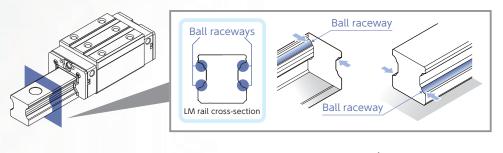
NEW

HDR



Model HDR LM Guide

Suited for Single Rail Applications


Feature 1 Suited for Single Rail Applications

The Model HDR LM Guide features a rigid design that can be used in tables configured for one LM Guide. It enables single-axis tables to be more compact and lightweight.

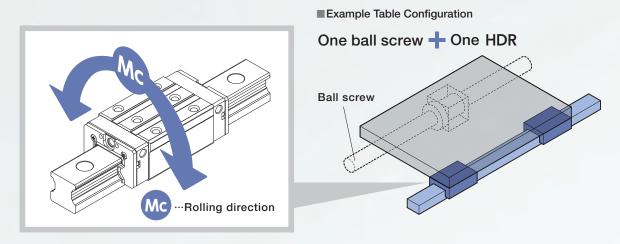
Feature 2 LM Rail Surface Protected from Foreign Materials p.4

The ball raceways of the Model HDR are featured on the sides of the LM rail, making it difficult for foreign materials to reach them.

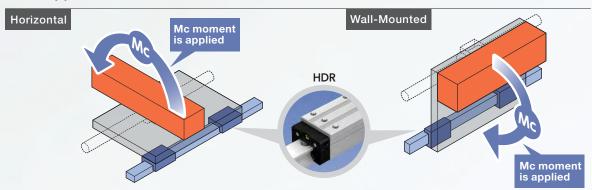
To use the product more safely, plate covers can also be installed to improve the contamination protection performance. Plate cover

Feature 3 LM Blocks and LM Rails Available Separately p. 19

LM rail

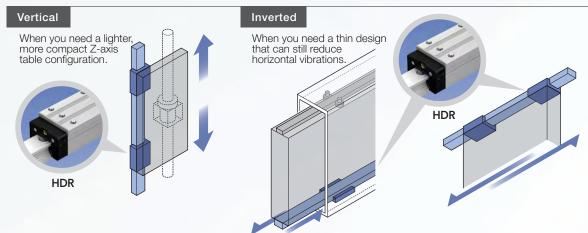

The Model HDR features a lineup of interchangeable LM blocks and LM rails that can be combined freely as long as they have the same model number. See p. 19 for details. p. 3

LM Guide Model HDR

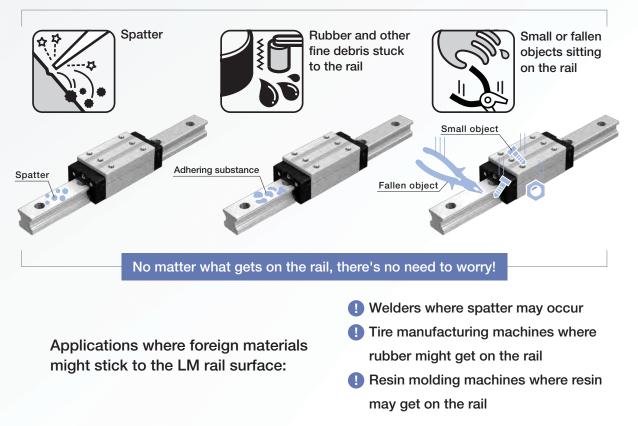

Feature 1 Suited for Single Rail Applications

High Rigidity in the Rolling Direction

The Model HDR LM Guide features a rigid design that can be used in tables configured for one LM Guide. It enables single-axis tables to be compact and lightweight.

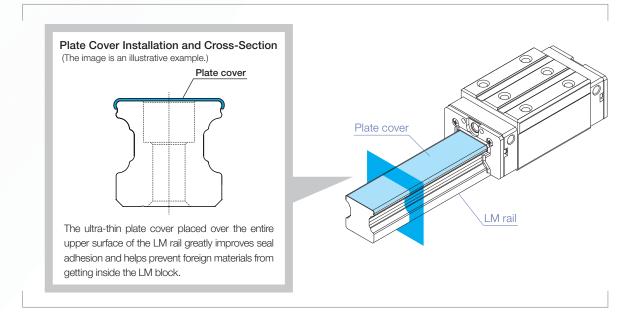


Ideal Applications



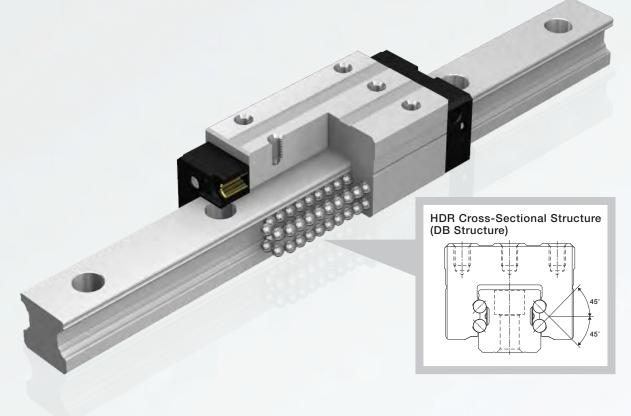
The Model HDR is ideal for applications where a constant Mc moment will be applied, such as configurations where an object will hang over the side of the table, or where the table is wall-mounted.

Other Single-Axis Configurations Where the Model HDR Excels



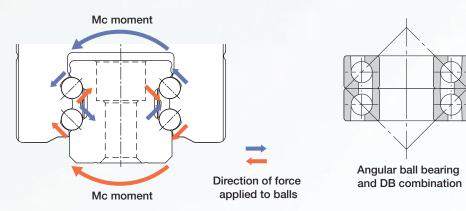
Feature 2 LM Rail Surface Protected from Foreign Materials

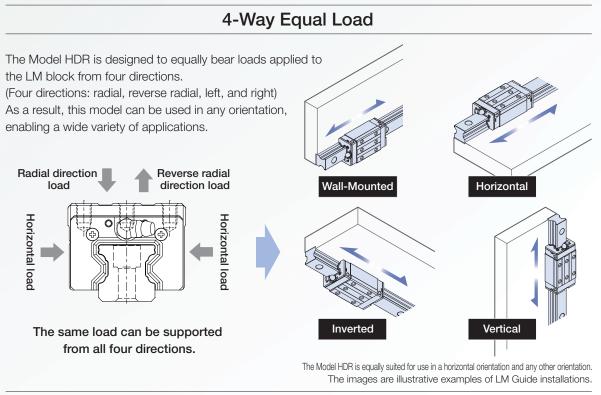
The ball raceways are featured on the sides of the LM rail, making it difficult for foreign materials to reach them.


To use the product more safely, plate covers can also be installed to improve the contamination protection performance.

LM Guide Model HDR

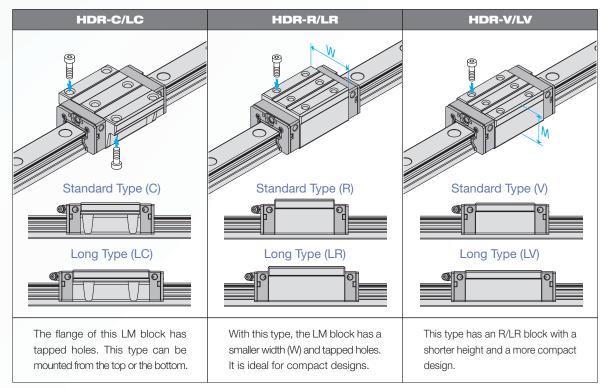
Structure of the HDR


The Model HDR features raceways on the sides of the LM rail, which come into contact with the balls at a 45° angle. The design of this DB structure makes it resistant to tilt in the rolling direction.



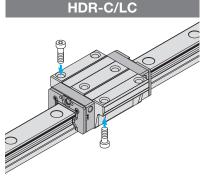
DB Structure (Back-to-Back)

This contact structure is designed so that the raceways fully support the balls even when an M_c moment is applied. As a result, this design is highly rigid and resistant to tilt in the rolling direction.

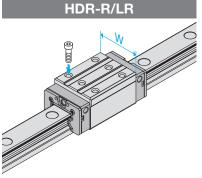

It is often used in conjunction with angular ball bearings when the moment load is high.

Globally Standard Dimensions

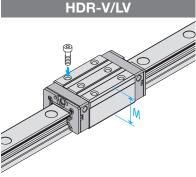
The Model HDR's dimensions conform to ISO standards (ISO 12090-1:2011 Rolling Bearings). Three types of ISO-standard LM blocks and two types of LM rails are also available, creating a total lineup of six types.


The Model HDR's dimensions conform to those of the current Model HSR, including the dimensions for product height (M), LM block width (W), LM rail width (W₁), LM rail height (M₁), mounting holes, and mounting hole pitch.

Lineup


The Model HDR comes in eight sizes ranging from 15 to 65, and a lineup of six block types is available: C/LC, R/LR, and V/LV.

 neu	IJ


Enledp									
Block types		HDR15	HDR20	HDR25	HDR30	HDR35	HDR45	HDR55	HDR65
<u>.</u>	R	0	0	0	0	0	0	0	0
Standard type	С	0	0	0	0	0	0	0	0
type	V	0	-	0	0	0	0	0	_
	LR	0	0	0	0	0	0	0	0
Long type	LC	0	0	0	0	0	0	0	0
	LV	0	_	0	0	0	0	0	_

The flange of this LM block has tapped holes. This type can be mounted from the top or the bottom.

With this type, the LM block has a smaller width (W) and tapped holes. It is ideal for compact designs.

This type has an R/LR block with a shorter height and a more compact design.

Contamination Protection Options

It is necessary to prevent foreign materials from getting inside the product, as it will lead to abnormal wear and a shortened service life. If it is likely that foreign materials will get inside, it is important to select an effective sealing or contamination protection device suited to the environmental conditions.

Seals

End seals made of a synthetic rubber that are highly resistant to wear and side seals that further improve dust-proofing effectiveness are available. Use the symbols in the table to the right to specify if you need a contamination protection accessory.

Seal Resistance Value

See the table below for the maximum seal resistance of SS seals per LM block when the product is lubricated.

Maximum Seal Resistance

			Unit: N
Model	number	Seal symbol	Maximum seal resistance
	15		7.7
	20		10.4
	25		11.7
HDR	30	00	15.5
ΠUΝ	35	SS	19.7
	45		23.7
	55		25.5
	65		30.3

Side Seal

Used in locations where dust may enter the LM block from the side or bottom surfaces, such as vertical, horizontal, and inverted configurations

Libit: N

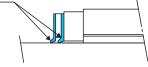
Options Symbol

 UU
 End seals

 SS
 End seals + side seals

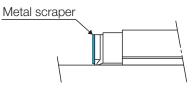
 DD
 Double seals + side seals

 ZZ
 End seals + side seals + metal scrapers


Option symbols

KK Double seals + side seals + metal scrapers

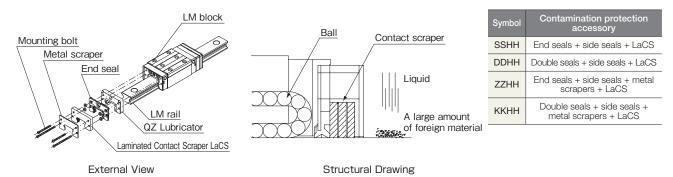
Double Seal


Used in locations exposed to excessive dust or cutting chips

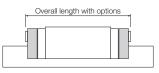
End seals

Metal Scraper (Non-Contact)

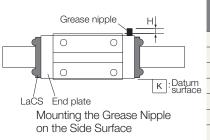
Used in locations where welding spatter may adhere to the LM rail



Laminated Contact Scraper LaCS


The Laminated Contact Scraper LaCS is available for locations with an adverse environment. With the three-layered laminated contact structure of the LaCS, each layer removes minute foreign material adhering to the LM rail and prevents it from entering the LM block.

Features


- Because the three layers of scrapers fully contact the LM rail, LaCS is highly capable of removing minute foreign material.
- Low friction resistance is achieved through the use of oil-impregnated, self-lubricating synthetic foam rubber.

LM Block Dimension (L Dimension) With LaCS and Seals Attached

Model No.	Standard overall length (SS)	UU	DD	ZZ	КК	SSHH	DDHH	ZZHH	ККНН
HDR15	61.4	61.4	65.8	65.2	69.6	77	81.4	78.2	82.6
HDR15L	74.9	74.9	79.3	78.7	83.1	90.5	94.9	91.7	96.1
HDR20	74.9	74.9	80.1	80.7	85.9	91.3	96.5	93.7	98.9
HDR20L	90.7	90.7	95.9	96.5	101.7	107.1	112.3	109.5	114.7
HDR25	87.6	87.6	92.8	93.4	98.6	105	110.2	107.4	112.6
HDR25L	104.5	104.5	109.7	110.3	115.5	121.9	127.1	124.3	129.5
HDR30	102.1	102.1	108.7	107.8	114.4	123.4	130	125.8	132.4
HDR30L	124.1	124.1	130.7	129.8	136.4	145.4	152	147.8	154.4
HDR35	116.5	116.5	123.5	122.2	129.2	137.8	144.8	140.2	147.2
HDR35L	139.5	139.5	146.5	145.2	152.2	160.8	167.8	163.2	170.2
HDR45	145.6	145.6	152.6	153.2	160.2	171.0	178.0	174.2	181.2
HDR45L	177.3	177.3	184.3	184.9	191.9	202.7	209.7	205.9	212.9
HDR55	179.2	179.2	186.2	186.8	193.8	204.6	211.6	207.8	214.8
HDR55L	217.3	217.3	224.3	224.9	231.9	242.7	249.7	245.9	252.9
HDR65	199.2	199.2	206.6	206.8	214.2	228.6	236.0	231.8	239.2
HDR65L	258.8	258.8	266.2	266.4	273.8	288.2	295.6	291.4	298.8

Incremental Dimension with Grease Nipple

		Incremental dimension with grease nipple/mm Greasing from the front				
	Model					
		H*	Nipple type			
	HDR15	4.4	PB107			
	HDR20	4.3	PB107			
	HDR25	7.05	B-M6F			
)	HDR30	7.1	B-M6F			
	HDR35	7.1	B-M6F			
	HDR45	7.1	B-PT1/8			
	HDR55	7.1	B-PT1/8			
	HDR65	6.1	B-PT1/8			

*Applies to R/LR/V/LV only.

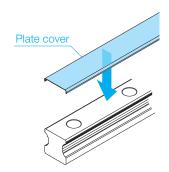
Maximum Resistance with LaCS

Model	Sliding resistance (maximum value)
HDR15	6.2
HDR20	7.9
HDR25	8.7
HDR30	11.9
HDR35	12.5
HDR45	25.9
HDR55	31.3
HDR65	32.7

Note) This data represents the resistance with LaCS only. It does not include the sliding resistance of LM blocks or seals.

Plate Cover

An ultra-thin plate cover is placed over the entire upper surface of the LM rail. This greatly improves seal adhesion and helps prevent foreign materials from getting inside the LM block.


Plate covers are made of stainless steel (SUS304), and they demonstrate superior environmental resistance.

*Applicable to all models except 15 and 20.

Dedicated Cap for LM Rail Mounting Holes

Using dedicated caps to cover the LM rail mounting holes helps prevent foreign material from entering the mounting holes and LM block.

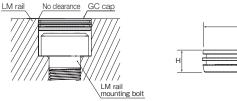
Option Compatibility

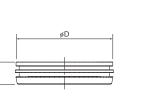
Model	C Cap	CV Cap	GC Cap
15	0	—	—
20	—	0	0
25	_	0	0
30	—	0	0
35	—	0	0
45	—	0	0
55	—	0	0
65	_	0	0

CV Caps/C Caps

These caps are made of a special synthetic resin.

The CV cap is the successor to the C cap, and its new structure makes it easier to insert.


Supported	Cap	Bolt	Main dimensions (mm)			
model	model	DOIL	D	Н		
15	C4	M4	7.9	1.0		
20	CV5	M5	9.8	2.6		
25	CV6	M6	11.4	2.6		
30 35	CV8	M8	14.4	3.3		
45	CV12	M12	20.4	3.4		
55	CV14	M14	23.4	5.5		
65	CV16	M16	26.4	5.6		


GC Cap

GC caps are made of metal and are RoHS compliant.

GC caps adhere closer to the counterbore than CV caps and C caps, so there is no clearance once they are inserted.

to clearance once they are inserted.

Supported	Cap	Bolt	Main dimensions (mm)			
model	model	DOIL	D	Н		
20	GC5	M5	9.86	2.5		
25	GC6	M6	11.36	2.5		
30 35	GC8	M8	14.36	3.5		
45	GC12	M12	20.36	4.6		
55	GC14	M14	23.36	5.0		
65	GC16	M16	26.36	5.0		

Note 1) GC caps are only sold with LM Guides. They are not sold separately. The LM Guide model number code will have "GC" at the end when it is delivered.

HDR25 LV 2 UU CO + 1200L P <u>GC</u>

GC caps attached

Note 2) GC caps cannot be used with LM rails that are made of stainless steel or rails that have undergone surface treatment.

Note 3) LM rail mounting holes for GC caps are special. (The mouths are not chamfered.)

Note 4) Be careful not to injure your hand when inserting GC caps.

Note 5) Be sure to make the GC caps level with the upper surface of the LM rail and clean (wipe) that surface after insertion.

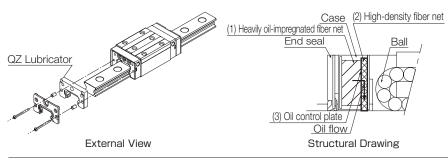
Note 6) If this product will be used in special environments, such as in a vacuum or at very low or high temperatures, contact THK.

Lubrication

Standard Grease

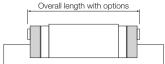
AFB-LF Grease is a general-purpose grease that provides excellent extreme pressure resistance and mechanical stability through the use of a refined mineral oil base oil and a lithium-based consistency enhancer.

AFB-LF Representative Physical Properties


Item		Representative value	Test method
Consistency enhancer		Lithium-based	
Base oil		Refined mineral oil	
Base oil kinematic viscosity: mm ² /	/s (40°C)	170	JIS K 2220 23
Worked penetration (25°C, 60	W)	275	JIS K 2220 7
Mixing stability (100,000 W	0	345	JIS K 2220 15
Dropping point: °C		193	JIS K 2220 8
Evaporation amount: mass% (99°	C, 22 h)	0.4	JIS K 2220 10
Oil separation rate: mass% (100°	C, 24 h)	0.6	JIS K 2220 11
Copper plate corrosion (R method, 100	0°C, 24 h)	Pass	JIS K 2220 9
Low-temperature torque:	Starting	130	JIS K 2220 18
mN•m (-20°C)	Rotational	51	JI3 K 2220 18
4-ball testing (welding load):		3089	ASTM D2596
Service temperature range:	°C	-15 to 100	
Color		Yellowish brown	

QZ Lubricator

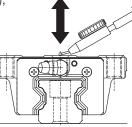
The QZ Lubricator feeds the right amount of lubricant to the LM rail raceway. This allows an oil film to continuously form between the rolling element and the raceway, and it significantly extends the lubrication and maintenance intervals. The QZ Lubricator is made primarily of three components: (1) a highly oil-impregnated fiber net (which stores lubricant), (2) a high-density fiber net (which applies the lubricant to the raceways), and (3) an oil control plate (which adjusts the amount of oil being applied). The lubricant is supplied from within the QZ Lubricator using the basic principle of capillary action, as used in felt-tip pens.


Features

- Since it compensates for oil loss, the lubrication maintenance interval can be significantly extended.
- It is an eco-friendly lubrication system that does not contaminate the surrounding area, as it feeds the right amount of lubricant to the ball raceway.

Symbol	Contamination protection accessory
QZUU	End seals + QZ
QZSS	End seals + side seals + QZ
QZDD	Double seals + side seals + QZ
QZZZ	End seals + side seals + metal scrapers + QZ
QZKK	Double seals + side seals + metal scrapers + QZ
QZSSHH	End seals + side seals + LaCS + QZ
QZDDHH	Double seals + side seals + LaCS + QZ
QZZZHH	End seals + side seals + metal scrapers + LaCS + QZ
QZKKHH	Double seals + side seals + metal scrapers + LaCS + QZ

LM Block Dimension (L Dimension) with QZ Attached


Model No.	Standard overall length (SS)	QZUU	QZSS	QZDD	QZZZ	QZKK	QZSSHH	QZDDHH	QZZZHH	QZKKHH
HDR15	61.4	81.4	81.4	85.8	85.2	89.6	97	101.4	98.2	102.6
HDR15L	74.9	94.9	94.9	99.3	98.7	103.1	110.5	114.9	111.7	116.1
HDR20	74.9	94.9	94.9	100.1	100.7	105.9	111.3	116.5	113.7	118.9
HDR20L	90.7	110.7	110.7	115.9	116.5	121.7	127.1	132.3	129.5	134.7
HDR25	87.6	107.6	107.6	112.8	113.4	118.6	125	130.2	127.4	132.6
HDR25L	104.5	124.5	124.5	129.7	130.3	135.5	141.9	147.1	144.3	149.5
HDR30	102.1	122.1	122.1	128.7	127.8	134.4	143.4	150	145.8	152.4
HDR30L	124.1	144.1	144.1	150.7	149.8	156.4	165.4	172	167.8	174.4
HDR35	116.5	136.5	136.5	143.5	142.2	149.2	157.8	164.8	160.2	167.2
HDR35L	139.5	159.5	159.5	166.5	165.2	172.2	180.8	187.8	183.2	190.2
HDR45	145.6	175.6	175.6	182.6	183.2	190.2	201.0	208.0	204.2	211.2
HDR45L	177.3	207.3	207.3	214.3	214.9	221.9	232.7	239.7	235.9	242.9
HDR55	179.2	209.2	209.2	216.2	216.8	223.8	234.6	241.6	237.8	244.8
HDR55L	217.3	247.3	247.3	254.3	254.9	261.9	272.7	279.7	275.9	282.9
HDR65	199.2	229.2	229.2	236.6	236.8	244.2	258.6	266.0	261.8	269.2
HDR65L	258.8	288.8	288.8	296.2	296.4	303.8	318.2	325.6	321.4	328.8

Radial Clearance Specifications

The Model HDR has three types of radial clearance (preload): normal, light preload (C1), and medium preload (CO).

The preload significantly affects the running accuracy, load resistance, and rigidity. Therefore, it is necessary to select a clearance that is appropriate for the application.

An appropriate radial clearance will prevent vibrations and impacts from occurring when the device is running, as well as improve the service life and accuracy of the LM Guide.

25 30 35

45

55

65

of surface C against

surface A Running parallelism

of surface D against

surface B

Radial clearance

Radial Clearance Specifications

			- 01110. μ111
Model	Normal (No symbol)	Light preload (C1)	Medium preload (C0)
15	-6.0 to 0	-10 to -6.0	—
20	-8.0 to 0	–14 to –8.0	–18 to –14
25	-9.0 to 0	–16 to –11	–21 to –16
30	-11 to 0	–18 to –13	–22 to –18
35	–13 to 0	–20 to –15	–25 to –20
45	–18 to 0	–29 to –22	–37 to –29
55	-20 to 0	–34 to –27	-42 to -34
65	–23 to 0	–39 to –28	-49 to -39

Unit: µm

Unit: mm

0 -0.008

0.003

0 -0.008

0.003

0 -0.015

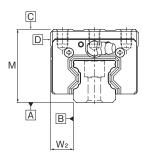
0.004

0 -0.015

0.004

Accuracy Standards

The accuracy of the LM Guide is specified for each model in terms of the dimensional tolerance for height and width, the difference between height and width in a pair, and running parallelism.


(Normal grade, high accuracy grade, precision grade, super precision grade, and ultra precision grade)

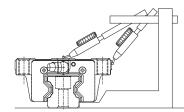
Difference in Height M

Indicates the difference between the minimum and maximum values of height M of each of the LM Guides used on the same plane in combination.

Difference in Width W₂

Indicates the difference between the minimum and maximum values of the width W2 between an LM rail and each of the LM blocks mounted together on the LM rail.

Accuracy Standards Accuracy (symbol Model Dimensional tolerance 0 -0.03 ± 0.07 ±0.03 in height M Difference in height M 0.02 0.01 0.006 Dimensional tolerance 0 -0.02 ±0.06 ±0.03 in width W₂ Difference in width Wa 0.02 0.01 0.006 Running parallelism LM Rail Length and Running Parallelism of surface C against by Accuracy Standard, see p. 12. surface A Running parallelism of surface D against surface B


LM Rail Length and Running Parallelism by Accuracy Standard, see p. 12. Dimensional tolerance 0 -0.04 0 -0.02 0 -0.01 ±0.08 ± 0.04 in height M Difference in height M 0.02 0.015 0.007 0.005 0.003 Dimensional tolerance 0 -0.03 0 -0.015 0 -0.01 ±0.07 ±0.03 in width W₂ 0.005 Difference in width Wa 0.025 0.015 0.007 0.003 Running parallelism of surface C against LM Rail Length and Running Parallelism by Accuracy Standard, see p. 12. surface A Running parallelism LM Rail Length and Running Parallelism of surface D against by Accuracy Standard, see p. 12. surface B Dimensional tolerance 0 0 -0.03 ± 0.08 ± 0.04 in height M 0.007 0.003 Difference in height M 0.025 0.015 0.005 Dimensional tolerance 0 -0.04 0 0 +0.07+0.04in width W₂ 0.03 0.015 0.007 0.005 0.003 Difference in width Wa Running parallelism LM Rail Length and Running Parallelism of surface C against by Accuracy Standard, see p. 12. surface A Running parallelism LM Rail Length and Running Parallelism of surface D against by Accuracy Standard, see p. 12. surface B Dimensional tolerance 0 -0.04 ± 0.08 ± 0.04 0 -0.05 0 -0.03 in height M Difference in height M 0.03 0.02 0.01 0.007 0.005 Dimensional tolerance 0 -0.05 ±0.08 ±0.04 0 -0.04 0 -0.03 in width W₂ Difference in width W₂ 0.03 0.02 0.01 0.007 0.005 Running parallelism

LM Rail Length and Running Parallelism by Accuracy Standard, see p. 12.

LM Rail Length and Running Parallelism by Accuracy Standard, see p. 12.

Running Parallelism

Running parallelism refers to the tolerance for parallelism between the LM block and LM rail datum surfaces when an LM block travels the whole length of an LM rail bolted to a reference surface.

LM Rail Length and Running Parallelism by Accuracy Standard

LM rail lei	ngth (mm)		Runnir	ng parallelism	values	
Above	Or less	Normal grade	High accuracy grade	Precision grade	Super precision grade	Ultra precision grade
_	50	5	3	2	1.5	1
50	80	5	3	2	1.5	1
80	125	5	3	2	1.5	1
125	200	5	3.5	2	1.5	1
200	250	6	4	2.5	1.5	1
250	315	7	4.5	3	1.5	1
315	400	8	5	3.5	2	1.5
400	500	9	6	4.5	2.5	1.5
500	630	11	7	5	3	2
630	800	12	8.5	6	3.5	2
800	1000	13	9	6.5	4	2.5
1000	1250	15	11	7.5	4.5	3
1250	1600	16	12	8	5	4
1600	2000	18	13	8.5	5.5	4.5
2000	2500	20	14	9.5	6	5
2500	3090	21	16	11	6.5	5.5

Standard and Maximum Lengths of the LM Rail

The standard and maximum lengths of Model HDR LM rails are shown in the following table.

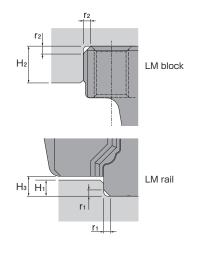
If the maximum length of the desired LM rail exceeds these values, joint rails will be used. Contact THK for details.

For special rail lengths, it is recommended to use the G,g dimension values from the table.

As the G,g dimension increases, this portion becomes less stable, and the accuracy may be negatively affected.

*If joint rails are not allowed, and a length greater than the maximum values is required, contact THK.

Standard and Maximum Lengths of the LM Rail


Model No.	HDR15	HDR20	HDR25	HDR30	HDR35	HDR45	HDR55	HDR65
	160	160	220	280	280	570	780	1270
	220	220	280	360	360	675	900	1570
	280	280	340	440	440	780	1020	2020
	340	340	400	520	520	885	1140	2620
	400	400	460	600	600	990	1260	—
	460	460	520	680	680	1095	1380	_
	520	520	580	760	760	1200	1500	—
Standard	580	580	640	840	840	1305	1620	_
length of	640	640	700	920	920	1410	1740	_
the LM rail	700	700	760	1000	1000	1515	1860	_
	760	760	820	1080	1080	1620	1980	_
	820	820	940	1160	1160	1725	2100	_
	940	940	1000	1240	1240	1830	2220	_
	1000	1000	1060	1320	1320	1935	2340	_
	1060	1060	1120	1400	1400	2040	2460	_
	1120	1120	1180	1480	1480	2145	2580	_
	1180	1180	1240	1560	1560	2250	2700	_

Lo Lo	 F		F	(g)
		L	.0	

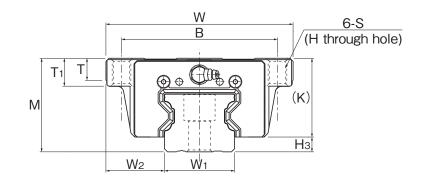
Unit: µm

							I	Jnit: mm
Model No.	HDR15	HDR20	HDR25	HDR30	HDR35	HDR45	HDR55	HDR65
	1240	1240	1300	1640	1640	2355	2820	_
	1360	1360	1360	1720	1720	2460	2940	—
	1480	1480	1420	1800	1800	2565	3060	—
	1600	1600	1480	1880	1880	2670	—	—
	—	1720	1540	1960	1960	2775	—	—
Standard	—	1840	1600	2040	2040	2880	—	—
length of	—	1960	1720	2200	2200	2985	—	—
length of the LM rail	_	2080	1840	2360	2360	3090	_	_
	—	2200	1960	2520	2520	—	_	—
	—	—	2080	2680	2680	—	_	—
	_	—	2200	2840	2840	—	—	_
		—	2320	3000	3000	_		
	—	—	2440	—	—	_		
Standard pitch	60	60	60	80	80	105	120	150
G,g dimension	20	20	20	20	20	22.5	30	35
Max length	3000	3000	3000	3000	3000	3090	3060	3000

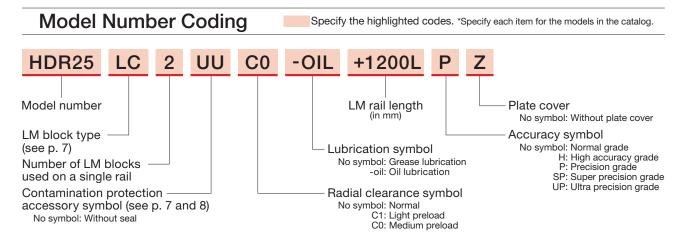
Shoulder Height of the Mounting Base and the Corner Radius

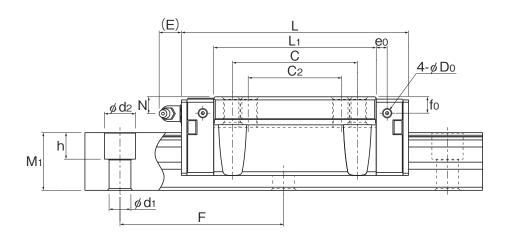
The mounting base for the LM rail and LM block has a reference surface on the side face to allow easy installation.

The height of the datum shoulder varies based on the model. See below for details.


The corner of the mounting shoulder must be machined to have a recess, or machined to be smaller than the corner radius r, to prevent interference with the chamfer of the LM rail or the LM block. The corner radius r varies based on the model. See below for details.

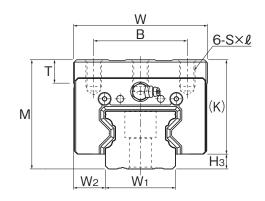
Shoulder Height of the Mounting Base and the Corner Radius Unit: mm


	0	•			
Model No.	Corner radius for the LM rail r1 (max)	Corner radius for the LM block r ₂ (max)	Shoulder height for the LM rail H ₁	Shoulder height for the LM block H ₂	H₃
HDR15	0.5	0.5	3	4	3.8
HDR20	0.5	0.5	4	5	4.5
HDR25	1	1	4	5	4.6
HDR30	1	1	5	5	5.7
HDR35	1	1	5.5	6	6.2
HDR45	1	1	8	8	9.5
HDR55	1.5	1.5	10	10	12
HDR65	1.5	1.5	10	10	12.7

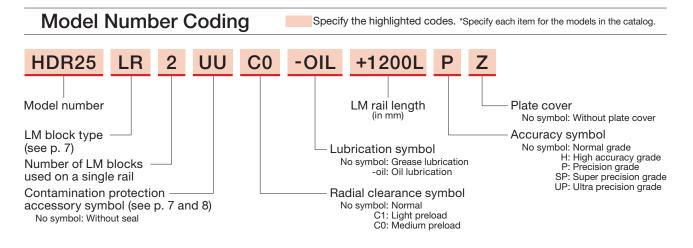

Specification Table

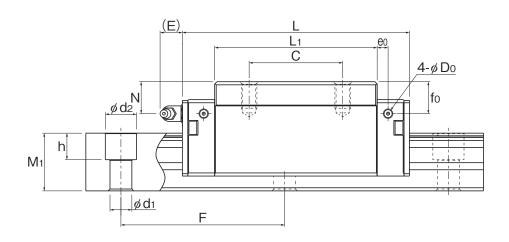
HDR-C/LC

		Extern	al dime	ensions						LM bloc	ck dime	ension	5				Pilot ho	ole for side	le nipple		
Mode		М	w	L	в	С	C₂	S	н	Lı	т	Τ1	к	N	E	Grease nipple	e _o	fo	Do	H₃	
HDR15	С	24	47	61.4	38	30	26	M5	4.4	40	5.9	9.9	20.2	3.5	3.4	PB107	3.5	3.6	2.9	3.8	
	LC	24	47	74.9	38	30	26	M5	4.4	53.5	5.9	9.9	20.2	3.5	3.4	PB107	3.5	3.6	2.9	3.8	
HDR20	С	30	63	74.9	53	40	35	M6	5.4	51.7	7.2	9.9	25.5	4.7	3	PB107	3.0	4.7	2.9	4.5	
HUNZU	LC	30	63	90.7	53	40	35	M6	5.4	67.5	7.2	9.9	25.5	4.7	3	PB107	3.0	4.7	2.9	4.5	
	С	36	70	87.6	57	45	40	M8	6.8	60	8	11.9	31.4	6.4	10	B-M6F	5.1	6.6	5.2	4.6	
HDR25	LC	36	70	104.5	57	45	40	M8	6.8	76.9	8	11.9	31.4	6.4	10	B-M6F	5.1	6.6	5.2	4.6	
HDR30	С	42	90	102.1	72	52	44	M10	8.5	70.5	8	14.9	36.3	7.5	9.5	B-M6F	4.8	7.5	5.2	5.7	
HDR30	LC	42	90	124.1	72	52	44	M10	8.5	92.5	8	14.9	36.3	7.5	9.5	B-M6F	4.8	7.5	5.2	5.7	
	С	48	100	116.5	82	62	52	M10	8.5	80.5	11.5	14.9	41.8	9.5	9.3	B-M6F	5.6	9.5	5.2	6.2	
HDR35	LC	48	100	139.5	82	62	52	M10	8.5	103.5	11.5	14.9	41.8	9.5	9.3	B-M6F	5.6	9.5	5.2	6.2	
HDR45	С	60	120	145.6	100	80	60	M12	10.5	104.2	14.1	17.9	50.5	10.5	14.3	B-PT1/8	8	10.5	5.2	9.5	
HDR45	LC	60	120	177.3	100	80	60	M12	10.5	135.9	14.1	17.9	50.5	10.5	14.3	B-PT1/8	8	10.5	5.2	9.5	
	С	70	140	179.2	116	95	70	M14	12.5	134.2	16	20.9	58	12	14.3	B-PT1/8	9	12	5.2	12	
HDR55	LC	70	140	217.3	116	95	70	M14	12.5	172.3	16	20.9	58	12	14.3	B-PT1/8	9	12	5.2	12	
HDR65	С	90	170	199.2	142	110	82	M16	14.5	144.8	18.8	23.9	77.3	19	14.3	B-PT1/8	10	19	5.2	12.7	
HDR03	LC	90	170	258.8	142	110	82	M16	14.5	204.4	18.8	23.9	77.3	19	14.3	B-PT1/8	10	19	5.2	12.7	


Unit: mm

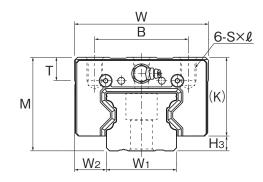
	LI	M rail dime	nsions	-	Basic load	rating (kN)	S	Static permi	issible mon	nent (kN∙m)	*	Ma	SS
W1	W2	M1	F	d₁×d₂×h	Ca	C₀	MA			-	Mc	LM block	LM rail
							One block	Double blocks	One block	Double blocks		(kg)	(kg/m)
15	16	15.6	60	4.5×7.5×5.3	10.9	15.7	0.098	0.601	0.098	0.601	0.155	0.21	1.5
15	16	15.6	60	4.5×7.5×5.3	13.7	21.7	0.182	0.984	0.182	0.984	0.215	0.28	1.5
20	21.5	20.07	60	6×9.5×8.5	19.8	27.4	0.227	1.27	0.227	1.27	0.348	0.46	2.5
20	21.5	20.07	60	6×9.5×8.5	23.9	35.8	0.378	1.97	0.378	1.97	0.456	0.59	2.0
23	23.5	23	60	7×11×9	29.2	39.5	0.392	2.13	0.392	2.13	0.574	0.71	3.4
23	23.5	23	60	7×11×9	33.8	48.6	0.582	3.09	0.582	3.09	0.707	0.90	3.4
28	31	26	80	9×14×12	40.5	53.7	0.623	3.38	0.623	3.38	0.956	1.25	4.8
28	31	26	80	9×14×12	48.9	70.2	1.04	5.26	1.04	5.26	1.25	1.61	4.8
34	33	30	80	9×14×12	53.9	70.2	0.93	5.03	0.93	5.03	1.54	1.76	0.5
34	33	30	80	9×14×12	62.4	86.4	1.38	7.32	1.38	7.32	1.9	2.23	6.5
45	37.5	37	105	14×20×17	86.9	110	1.82	9.82	1.82	9.82	3	3.08	10.8
45	37.5	37	105	14×20×17	105	143	3.03	15.3	3.03	15.3	3.93	4.00	10.0
53	43.5	43	120	16×23×20	135	170	3.61	18.6	3.61	18.6	5.51	5.21	14.0
53	43.5	43	120	16×23×20	161	219	5.84	28.5	5.84	28.5	7.09	6.66	14.8
63	53.5	54	150	18×26×22	195	228	5.27	28	5.27	28	8.79	9.38	22.3
63	53.5	54	150	18×26×22	249	323	10.2	50.3	10.2	50.3	12.5	13.15	22.3


*Static permissible moment One block: static permissible moment value with one LM block Double blocks: static permissible moment value with two blocks in close contact with each other

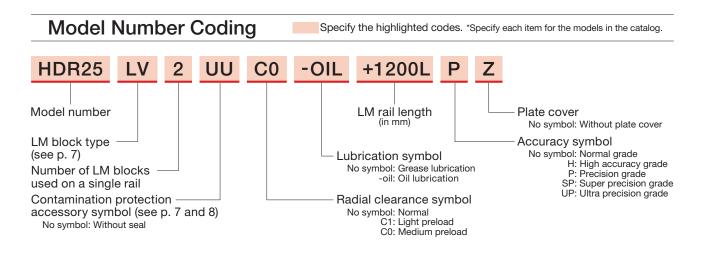

Specification Table

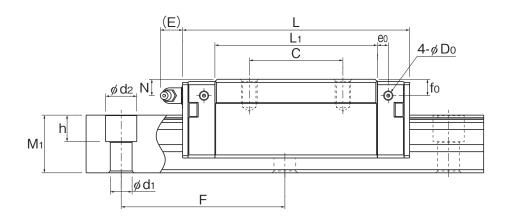
HDR-R/LR

		Exterr	nal dime	nsions				LM blo	ock dime	nsions				Pilot ho	le for sid	e nipple		
Mode	1	М	w	L	в	С	S×I	Lı	т	к	N	E	Grease nipple	e₀	fo	Do	H₃	
HDR15	R	28	34	61.4	26	26	M4×5	40	6	24.2	7.5	3.4	PB107	3.5	7.6	2.9	3.8	
	LR	28	34	74.9	26	26	M4×5	53.5	6	24.2	7.5	3.4	PB107	3.5	7.6	2.9	3.8	
HDR20	R	30	44	74.9	32	36	M5×6	51.7	8	25.5	4.7	3	PB107	3.0	4.7	2.9	4.5	
HUNZU	LR	30	44	90.7	32	50	M5×6	67.5	8	25.5	4.7	3	PB107	3.0	4.7	2.9	4.5	
	R	40	48	87.6	35	35	M6×8	60	9	35.4	10.4	10	B-M6F	5.1	10.6	5.2	4.6	
HDR25	LR	40	48	104.5	35	50	M6×8	76.9	9	35.4	10.4	10	B-M6F	5.1	10.6	5.2	4.6	
HDR30	R	45	60	102.1	40	40	M8×10	70.5	9	39.3	10.5	9.5	B-M6F	4.8	10.5	5.2	5.7	
HDR30	LR	45	60	124.1	40	60	M8×10	92.5	9	39.3	10.5	9.5	B-M6F	4.8	10.5	5.2	5.7	
HDR35	R	55	70	116.5	50	50	M8×12	80.5	11.8	48.8	16.5	9.3	B-M6F	5.6	16.5	5.2	6.2	
HDR35	LR	55	70	139.5	50	72	M8×12	103.5	11.8	48.8	16.5	9.3	B-M6F	5.6	16.5	5.2	6.2	
HDR45	R	70	86	145.6	60	60	M10×17	104.2	15	60.5	20.5	14.3	B-PT1/8	8	20.5	5.2	9.5	
NDN45	LR	70	86	177.3	60	80	M10×17	135.9	15	60.5	20.5	14.3	B-PT1/8	8	20.5	5.2	9.5	
HDR55	R	80	100	179.2	75	75	M12×18	134.2	20.5	68	22	14.3	B-PT1/8	9	22	5.2	12	
nDK00	LR	80	100	217.3	75	95	M12×18	172.3	20.5	68	22	14.3	B-PT1/8	9	22	5.2	12	
HDR65	R	90	126	199.2	76	70	M16×20	144.8	23	77.3	19	14.3	B-PT1/8	10	19	5.2	12.7	
HDR05	LR	90	126	258.8	76	120	M16×20	204.4	23	77.3	19	14.3	B-PT1/8	10	19	5.2	12.7	


Unit: mm

	LI	M rail dime	nsions		Basic load	rating (kN)	S	Static permi	issible mon	nent (kN∙m)	*	Ma	SS
W1	W2	M1	F	d₁×d₂×h	Ca	C₀					Mc	LM block	LM rail
							One block	Double blocks	One block	Double blocks	_	(kg)	(kg/m)
15	9.5	15.6	60	4.5×7.5×5.3	10.9	15.7	0.098	0.601	0.098	0.601	0.155	0.19	1.5
15	9.5	15.6	60	4.5×7.5×5.3	13.7	21.7	0.182	0.984	0.182	0.984	0.215	0.28	1.5
20	12	20.07	60	6×9.5×8.5	19.8	27.4	0.227	1.27	0.227	1.27	0.348	0.36	2.5
20	12	20.07	60	6×9.5×8.5	23.9	35.8	0.378	1.97	0.378	1.97	0.456	0.42	2.0
23	12.5	23	60	7×11×9	29.2	39.5	0.392	2.13	0.392	2.13	0.574	0.64	3.4
23	12.5	23	60	7×11×9	33.8	48.6	0.582	3.09	0.582	3.09	0.707	0.74	3.4
28	16	26	80	9×14×12	40.5	53.7	0.623	3.38	0.623	3.38	0.956	1.06	4.8
28	16	26	80	9×14×12	48.9	70.2	1.04	5.26	1.04	5.26	1.25	1.37	4.0
34	18	30	80	9×14×12	53.9	70.2	0.93	5.03	0.93	5.03	1.54	1.75	6.5
34	18	30	80	9×14×12	62.4	86.4	1.38	7.32	1.38	7.32	1.9	2.04	0.5
45	20.5	37	105	14×20×17	86.9	110	1.82	9.82	1.82	9.82	3	3.16	10.8
45	20.5	37	105	14×20×17	105	143	3.03	15.3	3.03	15.3	3.93	4.07	10.0
53	23.5	43	120	16×23×20	135	170	3.61	18.6	3.61	18.6	5.51	5.28	14.8
53	23.5	43	120	16×23×20	161	219	5.84	28.5	5.84	28.5	7.09	6.72	14.0
63	31.5	54	150	18×26×22	195	228	5.27	28	5.27	28	8.79	8.03	22.3
63	31.5	54	150	18×26×22	249	323	10.2	50.3	10.2	50.3	12.5	11.17	22.0


*Static permissible moment One block: static permissible moment value with one LM block Double blocks: static permissible moment value with two blocks in close contact with each other


Specification Table

HDR-V/LV

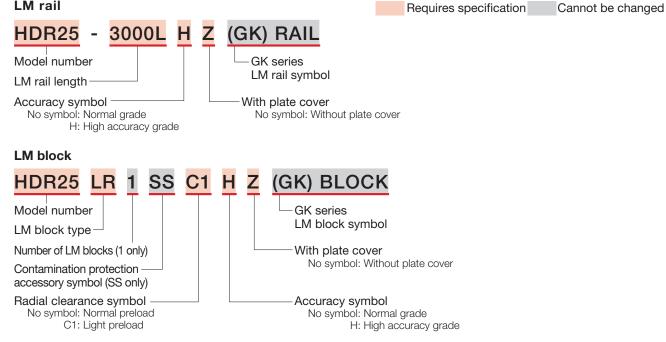
		Exterr	nal dime	nsions			_	LM blo	ock dime	nsions				Pilot ho	le for sid	e nipple		
Mode		М	w	L	в	С	S×I	Lı	т	к	N	E	Grease nipple	e₀	fo	D₀	H₃	
HDR15	V	24	34	61.4	26	26	M4×4	40	5.9	20.2	3.5	3.4	PB107	3.5	3.6	2.9	3.8	
HUN 15	LV	24	34	74.9	26	26	M4×4	53.5	5.9	20.2	3.5	3.4	PB107	3.5	3.6	2.9	3.8	
HDR25	V	36	48	87.6	35	35	M6×8	60	8	31.4	6.4	10	B-M6F	5.1	6.6	5.2	4.6	
NDN25	LV	36	48	104.5	35	50	M6×8	76.9	8	31.4	6.4	10	B-M6F	5.1	6.6	5.2	4.6	
HDR30	V	42	60	102.1	40	40	M8×10	70.5	8	36.3	7.5	9.5	B-M6F	4.8	7.5	5.2	5.7	
HDR30	LV	42	60	124.1	40	60	M8×10	92.5	8	36.3	7.5	9.5	B-M6F	4.8	7.5	5.2	5.7	
HDR35	V	48	70	116.5	50	50	M8×12	80.5	11.5	41.8	9.5	9.3	B-M6F	5.6	9.5	5.2	6.2	
HDR35	LV	48	70	139.5	50	72	M8×12	103.5	11.5	41.8	9.5	9.3	B-M6F	5.6	9.5	5.2	6.2	
	V	60	86	145.6	60	60	M10×15	104.2	14.9	50.5	10.5	14.3	B-PT1/8	8	10.5	5.2	9.5	
HDR45	LV	60	86	177.3	60	80	M10×15	135.9	14.9	50.5	10.5	14.3	B-PT1/8	8	10.5	5.2	9.5	
	V	70	100	179.2	75	75	M12×15	134.2	19.4	58	12	14.3	B-PT1/8	9	12	5.2	12	
HDR55	LV	70	100	217.3	75	95	M12×15	172.3	19.4	58	12	14.3	B-PT1/8	9	12	5.2	12	

Unit: mm

	L	VI rail dime	nsions		Basic load	rating (kN)	S	Static permi	ssible mon	nent (kN∙m)	*	Ма	ISS
W1	W2	M1	F	d₁×d₂×h	Ca	C₀	M				Mc	LM block	LM rail
							One block Double blocks (One block	Double blocks		(kg)	(kg/m)
15	9.5	15.6	60	4.5×7.5×5.3	10.9	15.7	0.098	0.601	0.098	0.601	0.155	0.15	1.5
15	9.5	15.6	60	4.5×7.5×5.3	13.7	21.7	0.182	0.984	0.182	0.984	0.215	0.20	1.5
23	12.5	23	60	7×11×9	29.2	39.5	0.392	2.13	0.392	2.13	0.574	0.51	3.4
23	12.5	23	60	7×11×9	33.8	48.6	0.582	3.09	0.582	3.09	0.707	0.62	3.4
28	16	26	80	9×14×12	40.5	53.7	0.623	3.38	0.623	3.38	0.956	0.74	4.8
28	16	26	80	9×14×12	48.9	70.2	1.04	5.26	1.04	5.26	1.25	1.00	4.8
34	18	30	80	9×14×12	53.9	70.2	0.93	5.03	0.93	5.03	1.54	1.34	6.5
34	18	30	80	9×14×12	62.4	86.4	1.38	7.32	1.38	7.32	1.9	1.65	0.5
45	20.5	37	105	14×20×17	86.9	110	1.82	9.82	1.82	9.82	3	2.47	10.0
45	20.5	37	105	14×20×17	105	143	3.03	15.3	3.03	15.3	3.93	3.17	10.8
53	23.5	43	120	16×23×20	135	170	3.61	18.6	3.61	18.6	5.51	4.25	14.0
53	23.5	43	120	16×23×20	161	219	5.84	28.5	5.84	28.5	7.09	5.40	14.8
•		•	·	÷				·					

*Static permissible moment One block: static permissible moment value with one LM block Double blocks: static permissible moment value with two blocks in close contact with each other

Feature 3 LM Blocks and LM Rails Available Separately


Standalone HDR-GK LM blocks and LM rails

Simple, quick, flexible combinations

Eineup							
Block type		HDR15	HDR20	HDR25	HDR30	HDR35	HDR45
Standard type	R	0	0	0	0	0	0
	С	0	0	0	0	0	0
	V	0	—	0	0	0	0
Long type	LR	0	0	0	0	0	0
	LC	0	0	0	0	0	0
	LV	0	_	0	0	0	0

Radial Clearance Specifications

The Model HDR has two types of radial clearance (preload): normal and light preload (C1).

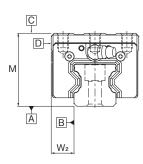
The preload significantly affects the running accuracy, load resistance, and rigidity. Therefore, it is necessary to select a clearance that is appropriate for the application. An appropriate radial clearance will prevent vibrations and impacts from occurring when the device is running, as well as improve the service life and accuracy of the LM Guide.

Radial clearance

Radial Clearance Specifications Unit: μ m					
Model	Normal (No symbol)	Light preload (C1)			
15	-6.0 to 0	–10 to –6.0			
20	-8.0 to 0	-14 to -8.0			
25	-9.0 to 0	-16 to -11			
30	-11 to 0	–18 to –13			
35	–13 to 0	–20 to –15			
45	–18 to 0	–29 to –22			

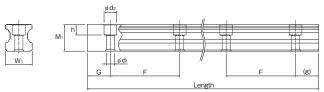
Accuracy Standards

The accuracy of the LM Guide is specified for each model in terms of the dimensional tolerance for height and width, the difference between height and width in a pair, and running parallelism.


(Normal grade, high accuracy grade)

Difference in Height M

Indicates the difference between the minimum and maximum values of height M of each of the LM Guides used on the same plane in combination.


Difference in Width W₂

Indicates the difference between the minimum and maximum values of the width W₂ between an LM rail and each of the LM blocks mounted together on the LM rail.

Accuracy S	Standards
------------	-----------

Accu	racy Stan	dards	Unit: mm		
Model	Α	ccuracy (symbol) Item	Normal grade (No symbol)	High accuracy grade (H)	
	Dimensio	onal tolerance in height M	±0.07	±0.03	
	Difference	One rail, multiple blocks (1 set)	0.02	0.01	
	in height M	Multiple rails, multiple blocks (multiple sets)	0.04	0.035	
15	Dimensio	onal tolerance in width W2	±0.06	±0.03	
20	Dif	ference in width W ₂	0.02	0.01	
	Running par	allelism of surface C against surface A	LM Rail Length and Running Parallelism by Accuracy Standard, see p. 12.		
	Running par	allelism of surface D against surface B	LM Rail Length and R Accuracy Stand	lunning Parallelism by dard, see p. 12.	
	Dimensional tolerance in height M		±0.08	±0.04	
	Difference	One rail, multiple blocks (1 set)	0.02	0.015	
	in height M	Multiple rails, multiple blocks (multiple sets)	0.04	0.035	
25 30	Dimensio	onal tolerance in width W2	±0.07	±0.03	
35	Dif	ference in width W2	0.025	0.015	
	Running par	allelism of surface C against surface A	LM Rail Length and Running Parallelism by Accuracy Standard, see p. 12.		
	Running par	allelism of surface D against surface B	LM Rail Length and Running Parallelism by Accuracy Standard, see p. 12.		
	Dimensio	onal tolerance in height M	±0.08	±0.04	
	Difference	One rail, multiple blocks (1 set)	0.025	0.015	
	in height M	Multiple rails, multiple blocks (multiple sets)	0.04	0.035	
45 .	Dimensio	onal tolerance in width W2	±0.07	±0.04	
	Dif	ference in width W2	0.03	0.015	
	Running par	allelism of surface C against surface A	LM Rail Length and Running Parallelism by Accuracy Standard, see p. 12.		
	Running parallelism of surface D against surface B		LM Rail Length and Running Parallelism by Accuracy Standard, see p. 12.		

LM Rail Dimensions

	LM rail dimensions				Mass	
Model	₩₁ ±0.05	M ₁		$d_1 \times d_2 \times h$	Length (G,g)	LM rail (kg/m)
15	15	15	60	4.5×7.5×5.3	3000(20,40)	1.5
20	20	18	60	6×9.5×8.5	3000(20,40)	2.5
25	23	22	60	7×11×9	3000(20,40)	3.4
30	28	26	80	9×14×12	3000(20,20)	4.8
35	34	29	80	9×14×12	3000(20,20)	6.5
45	45	38	105	14×20×17	3000(20,40)	10.8

Linit[,] mm

Calculating the Static Safety Factor and the Nominal Life of HDR and HDR (GK)

Static Safety Factor

To calculate a load applied to the LM Guide, you must first obtain the average load required to determine the service life and the maximum load needed to determine the static safety factor. In particular, if the system starts and stops frequently, if a cutting load acts on the system, or if a large moment or torque caused by an overhanging load is applied, it may experience an unexpectedly large load. When selecting a model number, make sure that the desired model is capable of supporting the required maximum load (whether stationary or in motion).

The reference values for the static safety factor are shown in the table to the right.

$$f_{s} = \frac{C_{0}}{P_{max}} \cdots \cdots (1)$$

f_S: Static safety factor C₀: Standard static load (N) P_{max}: Maximum load (N)

Service Life

Nominal Life

The nominal life (L) means the total travel distance that 90% of a group of units can achieve without flaking (scalelike pieces on the metal surface peeling off) after individually running under the same conditions. The nominal life of Model HDR is obtained using equation (2).

$$L = \left(\frac{\mathbf{f}_{H} \cdot \mathbf{f}_{T} \cdot \mathbf{f}_{c}}{\mathbf{f}_{w}} \cdot \frac{\mathbf{C}}{\mathbf{P}_{c}}\right)^{3} \times 50 \dots (2)$$

L: Nominal life (km) f_H : Hardness factor (see general catalog) f_C : Contact factor (see general catalog) C: Basic dynamic load rating (N) f_T : Temperature factor (see general catalog) f_W : Load factor (see general catalog) P_C : Calculated load (N)

*The basic dynamic load rating (C) indicates the load for which the nominal life (L) is 50 km when a group of identical LM Guides independently operate under that load when it is applied with a constant direction and magnitude.

Service Life

Once the nominal life (L) has been obtained, the service life can be obtained using equation (3) if the stroke length and the number of cycles are constant.

 $L_{h} = \frac{L \times 10^{6}}{2 \times \pounds_{s} \times n_{1} \times 60} \dots \dots (3)$

L_h: Service life (h) ℓ_s: Stroke length (mm)

n₁: Number of reciprocations per minute (min⁻¹)

Reference Values for the Static Safety Factor (fs)

Machine type	Load conditions	Lower limit of $f_{\mbox{\scriptsize S}}$
General	Without vibration or impacts	1.0 to 3.5
machinery	With vibration or impacts	2.0 to 5.0
Machine tool	Without vibration or impacts	1.0 to 4.0
Machine tool	With vibration or impacts	2.5 to 7.0

*The standard value of the static safety factor may vary depending on usage conditions such as the environment, lubrication status, mounting accuracy, and/or rigidity.

Handling

- (1) Please use at least two people to move any product weighing 20 kg or more, or use a cart or another method of conveyance. Otherwise, it may cause injury or damage the unit.
- (2) Do not disassemble the parts. This will result in loss of functionality.
- (3) Tilting an LM block or LM rail may cause them to fall by their own weight.
- (4) Take care not to drop or strike the LM Guide. Otherwise, it may cause injury or damage the unit. Even if there is no outward indication of damage, a sudden impact could prevent the unit from functioning properly.
- (5) Do not remove the LM block from the LM rail during setup.
- (6) Do not insert hands or fingers into the mounting holes on the LM rail, as they could get caught between the rail and the LM block, resulting in injury.
- (7) When handling the product, wear safety gloves and safety boots, etc., as appropriate to ensure proper protection.

Precautions on Use

- (1) Prevent foreign materials, such as cutting chips or coolant, from entering the product. Failure to do so could damage the product.
- (2) Prevent foreign materials, such as cutting chips, coolant, corrosive solvents, or water from getting in the product by using a bellows or cover when the product is used in an environment where such a thing is likely.
- (3) Do not use this product if the external temperature exceeds 80°C. If used above this temperature, there is a risk that the resin and rubber parts may deform or become damaged (except for the heat-resistant type).
- (4) If foreign materials such as cutting chips adhere to the product, replenish the lubricant after cleaning the product.
- (5) Micro-strokes can inhibit the formation of an oil film between the raceways and the area of contact for the balls, resulting in fretting. Therefore, be sure to use a type of grease with high fretting resistance. We recommend periodically causing the unit to make a stroke equal to the length of the LM block to help ensure that a film forms between the raceways and balls.
- (6) Do not forcibly drive a pin, key, or any other positioning device into the product. This could create indentations in the raceways and impair the product's function.
- (7) If, for operational reasons, it becomes absolutely necessary to remove the LM block from the LM rail and reattach it, a special mounting jig must be used for this purpose. (The mounting jig is not included with standard versions of the product. To obtain one, please contact THK.)
- (8) Position the mounting jig so that one end fully touches the end of the LM rail. When the rail and the jig are exactly aligned, the LM block can be loaded onto the rail.
- (9) Take care to keep the LM block straight. Loading the block at an angle can introduce foreign matter, damage internal components, or cause balls to fall out.
- (10) The LM block must contain all its internal rolling elements (balls) when mounted on the LM rail. Using a block with any balls removed may result in premature damage.
- (11) If any balls fall out of the LM block, contact THK. Do not use the product in that condition.
- (12) If the LM Guide breaks due to an accident or other cause, the block may come off of the rail and fall. For the safe use of this product, take precautions such as adding a mechanism to prevent the block from falling.
- (13) Insufficient rigidity or accuracy of the mounting surface could cause the bearing load to concentrate on one point, and the bearing performance will drop significantly. Therefore, give sufficient consideration to the rigidity and accuracy of the housing and base as well as the strength of the bolts.
- (14) When removing the LM block from the LM rail and then replacing the block, an LM block mounting/removing jig that facilitates such installation is available. Contact THK for details.

Lubrication

- (1) Thoroughly wipe off anti-rust oil and feed lubricant before using the product.
- (2) Do not mix different lubricants. Even grease containing the same type of thickening agent may, if mixed, interact negatively due to disparate additives or other ingredients.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as in clean rooms, vacuums, and low/high temperatures, use a lubricant suitable for its use/environment.
- (4) Do not use grease lubrication for products whose model coding specifies "-OIL."
- (5) When lubricating products that do not feature a grease nipple or oil hole, directly coat the raceways with lubricant and perform several warm-up strokes to ensure that the grease permeates the interior.
- (6) Grease viscosity can vary depending on the temperature. Please keep in mind that the sliding resistance of the LM Guide may be affected by changes in viscosity.
- (7) After lubrication, the slide resistance of the LM Guide may increase due to the stirring resistance of grease. Be sure to let the grease spread fully before operating the machine.
- (8) Excess grease may spatter after lubrication. Wipe off spattered grease as necessary.
- (9) Grease deteriorates over time, which decreases the lubricity. It is necessary to inspect and replenish the grease in accordance with the usage frequency.
- (10) The greasing interval varies depending on the usage conditions and environment. We recommend greasing the system approximately every 100 km of travel distance (3 to 6 months). The final greasing interval/amount should be set at the actual machine.
- (11) If the product is mounted in a non-horizontal orientation, the lubricant may not reach the raceway completely.
- (12) When adopting oil lubrication, the lubricant may not be distributed throughout the LM block depending on the mounting orientation of the block. Contact THK in advance for details.

Storage

When storing the LM Guide, enclose it in the package designated by THK, and store it indoors and in a horizontal orientation while avoiding any high temperatures, low temperatures, or high levels of humidity.

Please note that if the product has been kept in storage for an extended period, the lubricant inside may have deteriorated. Please ensure that you replenish the lubricant before using.

Disposal

The product should be treated as industrial waste and disposed of appropriately.

Suited for Single Rail Applications HDR

• " is a registered trademark of THK CO., LTD.

- The actual products may differ from the pictures and photographs in this catalog.
 Outward appearances and specifications are subject to change without notice for the purpose of improvement. Please consult with THK before using.
 Although great care has been taken in the production of this catalog, THK will not take any responsibility for damage resulting from typographical errors or omissions.
 For exports of our products and technologies and sales for export, our basic policy is to comply with the Foreign Exchange and Foreign Trade Act and other laws and regulations. Please consult us in advance if you want to export our products by the piece.

All rights reserved

THK CO., LTI

Headquarters 2-12-10 Shibaura, Minato-ku, Tokyo 108-8506 Japan International Sales Department Phone: +81-3-5730-3860

www.thk.com

North America

THK America, Inc.	
Headquarters	.Phone: +1-847-310-1111
Chicago Office	.Phone: +1-847-310-1111
North East Office	.Phone: +1-631-244-1565
 Atlanta Office 	.Phone: +1-770-840-7990
●Los Angeles Office	.Phone: +1-949-955-3145
●San Francisco Office	.Phone: +1-925-455-8948
Detroit Office	.Phone: +1-248-858-9330
Toronto Office	.Phone: +1-905-820-7800

South America

THK BRAZIL INDUSTRIA E COMERCIO LTDA. Phone: +55-11-3767-0100

Europe

THK	GmbH
-----	------

European Headquarters.	Phone: +49-2102-7425-555
Düsseldorf Office	Phone: +49-2102-7425-0
Stuttgart Office	Phone: +49-7141-4988-500
●U.K. Office	Phone: +44-1384-471550
Italy Office	Phone: +39-02-9901-1801

Sweden OfficePhone: +46-8-445-7630
Austria OfficePhone: +43-7229-51400
Spain OfficePhone: +34-93-652-5740
•Turkey OfficePhone: +90-216-362-4050
Prague OfficePhone: +420-2-41025-100
Moscow OfficePhone: +7-495-649-80-47
THK Europe B.V.
● Eindhoven OfficePhone: +31-40-290-9500
THK France S.A.S.
Paris OfficePhone: +33-1-7425-3800
China
THK (CHINA) CO., LTD.
HeadquartersPhone: +86-411-8733-7111
 Shanghai BranchPhone: +86-21-6219-3000
•
● Shanghai BranchPhone: +86-21-6219-3000

•Shenzhen Branch.....Phone: +86-755-2642-9587

•Xian Branch.....Phone: +86-29-8834-1712

THK (SHANGHAI) CO., LTD. Phone: +86-21-6275-5280

Taiwan

тык	TAIWAN	\sim	

- •Taipei Headquarters......Phone: +886-2-2888-3818
- Taichung OfficePhone: +886-4-2359-1505
- •Tainan OfficePhone: +886-6-289-7668

South Korea

Seoul Representative Office....Phone: +82-2-3468-4351

Singapore

THK LM System Pte. Ltd.....Phone: +65-6884-5500

Thailand

THK RHYTHM (THAILAND) CO., LTD. LM System Div	ision
Bangkok BranchPhone: +66-2751-300	1

India

.

THK India Pvt. Ltd.	THK	India	Pvt.	Ltd.	
---------------------	-----	-------	------	------	--

Headquarters & Bengaluru Branch	.Phone: +91-80-2340-9934	
Pune Branch	.Phone: +91-72-7600-2071	
Channai Branch	Dhanay 101 44 4040 2120	

Chennai Branch	Phone:	+91-44-4042-3132
Ahmedabad Branch	Phone:	+91-79-6134-4925

Delhi Branch.....Phone: +91-12-4676-8695